Datalight ROM-DOS®

Developer’s Guide

Datalight ROM-DOS6 peveloper’s Guide

Copyright © 1999-2003 by Datalight, Inc.
Portions copyright © GPvNO 2003

All Rights Reserved.

Datalight, I nc. assumes no liability for the use or misuse of this software. Liability for any
warrantiesimplied or stated is limited to the original purchaser only and to the recording medium
(disk) only, not the information encoded on it.

U.S. Government Restricted Rights. Use, duplication, reproduction, or transfer of this commercial
product and accompanying documentation is restricted in accordance with FAR 12.212 and
DFARS 227.7202 and by alicense agreement.

THE SOFTWARE DESCRIBED HEREIN, TOGETHER WITH THIS DOCUMENT, ARE
FURNISHED UNDER A SEPARATE SOFTWARE OEM LICENSE AGREEMENT AND MAY
BE USED OR COPIED ONLY IN ACCORDANCE WITH THE TERMS AND CONDITIONS
OF THAT AGREEMENT.

DatalightO and ROM-DOSP are registered trademarks of Datalight, Inc.
FlashFX® is a trademark of Datalight, Inc.
All other product names are trademarks of their respective holders.

Part Number: 3010-0200-0496

Contents

(O F=T o 1= b I o T [T f oo O
ADBOUt ROM -DOS......oorerrrireeerieereseessssessssesssesssssssssssssssssssssssnnes
ROM-DOS Target System Requirements
ROM-DOS Development System REQUIFEMENTS..........ccieeeiererineeineee s sessssessesessessssesesns 2
Requesting Technical Assistance
ROM -DIOS BESICS ...cuereuereuereurereesesseressesenstsessssesssssssssssssssssssssessssssssssssssssessssassssassssssssssssessesssssssssssssssnes
The Major Software COMPONENES.........ccovveeirerirrreesre st sa st ssesss s st ss s s sessees
Placing ROM -DOS in aROMcccocevevceerneneseeseesesenens
DOS 0N @ DISK....eriereiereiereeireisiseisiseis e
Using ROM -DOS with Flash Memorycccocecvvevecinnne.
What iS SOCKETS?.....oiiirieireeireentesensisesisess e sssessenees
What dOeS SOCKET S PrOVITE?c.cuvuiereeererereeireresistssessssasesessss s ssesssnes 8

Chapter 2, ADOUL TCP/IP ...ttt
QLI A T T
ClENU/SEIVEN IMOGE ...ttt bbb sttt
File Transfer Protocol (FTP)
TEINEL <. s b bbb
VLB ettt bRt
HyperText Transfer Protocol (HTTP)
e 10T RPN
Application Programming INterface (API) ... ressesesesesssssesesssssssessssssssessssssssenens 13
Transmission Control Protocol (TCP)
User Datagram ProtoCOl (UDP) ..o ssse s sssssssssssessssesnesees
2.10. INtErNEt ProtOCOI (1P) ..uveveeeeereeerseerseetreesneiee st es s essssenns
Internet Control Message Protocol (ICMP)
L0111 o PPN
Routing Information Protocol (RIP)
Address Resolution Protocol (ARP)

BIOOTP... ettt b bbb bbb bbbt
Dynamic Host Configuration ProtoCol (DHCP).........ccccieriecersesessessssssesssssessssssssssssssnens 16
Point-to-Point Protocol (PPP)
SENIA LINE TP (SLIP) .ottt bbb
Compressed Serial LINE [P (CSLIP)..... s iesesessessesesssssesesssssesesssssssessssssssesssssesnes 17
Media Support

Ethernet and Token Ring

SENTE INEEITACE ...ttt 17
REFEIBINCES......c ettt b bbbt b e bbbt bes e eantas 17

Chapter 3, Programming REFErENCE.........cccccevrirercesrsess st sssssnses 19

Library Use/Linking

DI SCIAIMIET ...ttt bbbt

COMPILErS SUPPOIEA.......ceeeeiecieireresireresessie s ss s s st ssss s s e s snssssennsnsnsnenens 19

Memory Models

Library and Header LOCALIONS..........cuureerreeerreerreeesseese s sesssss s ssssesneses 19

HeEaOEr DEPENUENCIES.......cceeerereceeeeireeie ettt sttt ennsesen 19

Contents

SAMPIE COUE......cueeeerirccre s e e e 20
(o] g1 =T (] 1o ST o oo o A 20
ROM-DOS Libraries
FUNCE ON REFEIEINCE. ...ttt bbb 20
TCP/IP BasiC APl REFEIENCE (CAPI) ...ttt sas s s 50
TCP/IP Basic APl Overview
TYPES OF SEIVICE. ..ottt s et na et s e s snsnenennanens
Establishing ReMOte CONNECLIONS.........couveeiririrererineseesesesessesessssssesesssssssessssssssessssssssenssssesnes
Using STREAM and DATAGRAM Services
Blocking and NOn-blOCKiNGg OPEratioNS.........ccveureerereererieresenissnesesseesssesessees e ssesessesees
Blocking OperationS With TIMEOULS........cccureerrierreee s sseses
Asynchronous Notifications/Callbacks
[P AQArESS RESOIULION......coovieeurerireeicieire st sesis ettt
Obtaining SOCKETS Kernel Information
Error Reporting
Low Level Interface to the Compatible APl ...
Alternatives to the COMPatibIE APl ...t
Porting for Compilers

TCP/IP Advanced API Reference (BSD TCP/IP SOCKELS).......ccverererrereereernieenieennseeeseeeerseeneaas 80
TCP/IP SOCKETS APl OVEIVIEW.....cecrerererinrereeeerseeessesessesessssessssesssssssssssssssssessssssssssssssssesssesns 80
Types of Service.
Establishing REMOtE CONNECLIONS.........ccoueuiivireririsiressisesessstsess s sssssssesssssssessssssssssssssssnens 81
Using SOCK_STREAM and SOCK_DGRAM SEIVICEScourureureriereneieereerersisensesesesessseanes 81
Blocking and Non-blocking Operations
OUL OF DANA ABLAL.......couceeeireriree ittt bbb bbb
EITON REPOIMING w.vvvieecireccte sttt sttt a s st saen
Other sources of Information
POITING ISSUES......ocuriireeereeceeresisieesesessssesesesas s ssesssssssse st e s st essesssssessesesnsessenssnsssenssnsesnes

CGIl Application AP (SEIVEN AP ...ttt ssesssssessssesssssssssssssssssssssnses
Introduction
SPAWNING CGl ..o bbb
Overview Of the EXENtION AP ... sees
SSI Interface
EXLENtion APl EXGMPIES ..ottt nan
HTTPD FUNCLION REFEIENCE........cuiericeririrecieirereeeiseesis et
Constants and Definitions used by CGI API
SSI Definitions and fUNCLIONS........c.ocueeeriirireeireeereseeisesises e bbb seeen

OENEE APIS.... et bbb bbb
FTPAPI
NETBIOS ..ottt
SOCKETS Proprietary APlcceeveeciereseseesesssssesesssssesesessssssesssssssssssssssssssssssssssssssssssses

(04 =T o1 = g N I o T =SSP
BUIAING ROM -DOS ...ttt ettt
BUILD Command Line Options

Before RUNNING BUILD ...ttt s s st ss s sssssnsssns

Contents

BUILD Sample SESSIONS......cccvuiieririsiriririseseseseseesesesesesesssssssssssssssssssssssssssssssssssssssnsssssssssssssnsaes
Creating @ROM DiSK.....ccuiiiericieeiscisesise ettt b bbbttt s bbb sttt sne
Running ROMDISK To Create a Disk in ROM
ROMDISK OPLiONS.....coiiicieiieiicieisisesie e sessssessssssssssssssssessssssssssssssssssssssssssessssssssesssssseses
Configuring the ROM Disk DEVICE DIIVEYcoeeeevereciersesietseses s ssssssssssssssssseses
Including Device Drivers
ROM -DOS DEVICE DIIVENS.....ouierieeireecieieitieieieees et ssssesssess sttt ssssssssssssaes
WIItING DEVICE DIIVEIS......cueeeceeereeecietse st esessessesessss e sssssssssssssssssesssssessssssssessssssssssssssnssnses
Adding New Device Drivers
UsiNg @ CUSLOM MEMOTY DiSKvueuuiriuiieerieeerresessesse s ssse s ssssessssssssnes
Creating a CUSLOMM EMOTY DiSKoucrecrreerrierreieeneeeesisessisess s s ssessssesees
Memory Disk Base
About Client COOE FUNCLIONS.........ccceuiiieririreeeiresesisi e seasis et se s sessaneas
Terminate-and-Stay-Resident (TSR) DIVENScccovvvvvrrriseses s sesesssssesesssssssesssssesennns
Memory Disk Math Routines
Making Special Configuration ChangES..........ccuceirerreeirerece s sssssssessssees
Configuring ROM -DOS Through SY SGEN.ASM ... sssssssssssssssssenes 146
Configuring Through CONFIG.SY S
ROM -DOS LoNg Fil€Name SUPPOIcccerurereerereseeesesesssesssessssssesessssssesessssssssessssssssssseses
Configuring Through the BIOS........corerrrrcseess e sesss s ssessssssssesssssnsnes
Creating a Custom Sign-on Message
The CommMEaNd INEENPIELEYc.ccveeeree e
Debugging and TroublE€SNOOTING.........ccucreerreerre e
Print Statements
RS 00 01E= N BT o 11T (o 1 o
[0 Tox= T o TH T o 1 T AT
Troubleshooting with Boot Diagnostics
Some COMMON ProBIEBMS ... bbb
Creating ROMabl € APPliCALIONS.......ccuveceeirieccterensse s stse st se st s ssssesssssessssssssnses
RXE Convert Operation
RXE OptimiZE OPEraLiONvveveeerereceeireresiesesessssesesesssssesessssssssesssssssssssssssssesssssesssssssssssassseses
RXE VXY OPEIELiON ..o sesesss s esessssssesesss s ssessssssesessssssssesssssesssssssssssnsseses
Power Management
OVEIVIBW......ooetieeieeeereeae ettt a st se e e s ae st se e b e e s e s s e £ e sn b se et s e e sesessennanteeren
Operation of POWER.EXE and the Application Interface...........cooovvvervencrnencenesceneeeneenes 158
The BIOS Interface to POWER
INStallation @Nd USAQgE.........ccceiriierinssses s s ss s sssssssnsnnes
SYStEMSWILNOUL APM ...ttt ettt
Non Standard Platforms/Pen Based Systems
Implementing ROM -DOS SUPEIBOOLcccueiricieirireeesesestssssessssssssssssssss s sssssssssssssssssesesnes
Dual-booting a System Using Hidden Files........cooevviccnsesccssese s sssssssenns
Using Win95 or Win98 as Primary Operating System
Dynamic System CONfiGQUIBLIONcccururereeeeireresisesesssesesesssee s sssssesessssssesesssessssessssssssssssssssssnees
INEFOAUCTION.....teeeetee ettt
How Does Dynamic System Configuration Work?
Using the DYNamicC DIiVEr LOBOES ..o ssssessssesssesssssssssssessenes
Examining the Example CONFIG.SY S File......conrcrrreeneeneeesssese e
About the Dynamic Driver Loader
About Config.sys Processing and the NEWFILE Command...........cccoueeevreencnennenessnnnns 169

Contents

Chapter 1, Introduction

About ROM-DOS
ROM-DOS is designed to be the best x86 DOS solution available.

Using the fully featured BUILD configuration tool, the embedded system devel oper can create a
DOS kernel which is completely compatible with either standard DOS 6.22 or DOS 7.1 in just a
few steps.

In either compatibility mode (6.22 or 7.1), ROM -DOS provides any or all of these features:

Long Filename Support in the kernel, the command processor, and utilities.
Boots and/or executes the kernel from a ROM or adisk.

Change configuration at either compile time or run time (via CONFIG.SY S).
COMMAND.COM not required to execute the user’ s application.

Directly supports LS-120 and other modern hardware without need for drivers.
Specia Century Date handling for older BIOSs.

Boot menu and dual-boot support.

International support for 21 countries, both display and keyboard.

Memory management through the XM S and HIMEM standards.

Built-in support for avariety of RAM and ROM disks.

Remote access to disk drives and file transfer using the Zmodem protocol.
Fully featured DOS in as little as 54kb ROM, 10kb RAM.

ROM-DOS allows a devel oper to create an embedded system with DOS functionality using Read
Only Memory (ROM), flash, or hard disks. Full support for various devicesis easily added using
device drivers. ROM -DOS works equally well on a system with limited or full hardware
resources.

The ROM-DOS SDK includes a variety of utilities for placing an application in ROM, aswell as
full source for all device drivers. ROM-DOS, provided in library and executable form, offers the
following advantages:

Specifically designed for the embedded system or mobile computing devel oper.
All hardware access done exclusively through the BIOS.
Full source code available.

Chapter 1, Introduction

ROM-DOS Target System Requirements

The target system is the hardware in which ROM -DOS will be running. At a minimum, ROM -
DOS requiresthat the target system include:

Intel x186 or compatible CPU

54k of ROM or disk space for DOS 6.22

67k of ROM or disk space for DOS 6.22 with LFN support
59k of ROM or disk space for DOS 7.1

72k of ROM or disk space for DOS 7.1 with LFN support
aminimum of 10KB RAM

asfew as eight BIOS calls (depending on configuration)

No special hardware or software, other than that specified above, isrequired by ROM -DOS.
Additional memory may be required for the BIOS and/or the emulated disk drive.

ROM-DOS Development System Requirements

To configure and build aversion of ROM -DOS for installation in your target hardware, you'll
need Borland TASM and TLINK version 5.2. Compiling source code for device drivers or
features such as the mini-command interpreter may also require Borland's compiler BCC. These
toolsareincluded in the Datalight Software Developer’s Tool Kit (SDTK).

Requesting Technical Assistance

If you encounter a problem in configuring, building, or programming ROM -DOS, please:

Attempt to resolve the problem by referring to this manual. Y ou can use the table of
contents and the index to locate information.

Check the README.TXT file for any late-breaking changes or additions to the product
not covered in the manual.

Y ou can contact Datalight:
viathe web at www.datalight.com
viaemail at support@datalight.com
viatelephone at 800.221.6630
In any communication with Datalight, be sure to include the version and revision information from

the original ROM -DOS SDK installation CD-ROM. If you have comments or suggestions about
ROM -DOS or documentation, please contact us.

Chapter 1, Introduction 3

ROM-DOS Basics

Datalight had three goals when designing ROM -DOS: compatibility, flexibility, and affordability.
A compatible DOS remains the primary goal for ROM-DOS. If you find a program that does not
run correctly under ROM -DOS, but runs under the compatible version of MSDOS, please contact
our Technical Support department.

Whether your hardware is PC-compatible or not; with ROM -DOS your operating system will be
compatible. The only requirementsfor ROM -DOS are RAM, an 80x186 or higher CPU
(including the NEC V-series), and in some cases ROM. ROM -DOS can take full advantage of all
hardware in your system, including large hard drives, CD-ROM drives, flash memory, and
PCMCIA cards.

ROM -DOS performsall interactions with hardware through device drivers. These drivers,
provided in full source, work as you would expect from a desktop DOS, whether your systemisa
small embedded computer, palmtop, or aworkstation. ROM -DOS provides a DOS platform on
virtually any system.

The following sections describe the various software components that make up a complete system
using ROM-DOS. Included is ageneral description of a DOS-based computer system, as well as
some design ideas to aid in hardware selection.

The Major Software Components

At aminimum, ROM-DOS requires a BIOS and a command interpreter to boot the system. The
command interpreter can be Datalight's COMMAND.COM (which provides the familiar C:>
prompt), or just an application that ROM -DOS runs directly. This program istypically run from a
ROM disk on diskless systems or from afloppy/hard disk on systems that have them.

The BIOS gains control as power is applied to the computer, initializes hardware and RAM, and
passes control to ROM -DOS. ROM -DOS then determines what hardware support is available
through its device drivers, and loads your application or aconmand interpreter to complete the
boot process.

The BIOS always residesin ROM (or some other non-volatile memory). The ROM -DOS kernel
can reside and run in ROM, or be loaded from adisk. The command interpreter,
COMMAND.COM, or the application program, resides on a disk — either floppy, hard, ROM,
RAM, flash (Datalight’s FlashFX), CD-ROM or any other disk that DOS can access.

The following illustrations show the locations of the software componentsin atypical embedded
system and in a desktop PC.

Chapter 1, Introduction

FFFFFh

00000h

BIOS

Video/disk ROM
and RAM

(contains UMBs
and EMS)

DOS RAM

ROM-DOS kernel

BIOS RAM

Vectors

Conventional
memory
(640KB)

Typical PC System Memory Layout

FFFFFh

00000h

BIOS

ROM-DOS kernel

ROM disk

other BIOS extensions

DOS RAM

BIOS RAM

Vectors

— ROM area

Conventional

~ memory

(640KB)

Typical Embedded System Memory Layout

The following illustration depicts the interaction of software components. The user application
communicates with the command interpreter and/or ROM-DOS. These operating system
components then communicate with the appropriate device drivers. The device drivers
communicate with the BIOS which then makes requests to the system hardware.

Chapter 1, Introduction 5

Application

COMMAND.COM

ROM-DOS kernel

Floppy Hard disk Clock Printer
disk driver driver driver driver

BIOS

System hardware

Software/Hardware Hierarchy

BIOS

BIOSisan acronym for Basic Input/Output System. All 1/O in a system goes through the BIOS,
unless the application ties directly to the hardware. The BIOS program is placed in ROM in every
desktop computer and any system that can run DOS. It acts as the interface between DOS and the
hardware after starting the computer from a power off state. Other functions of the BIOS include
initializing any hardware required for the system to run (such as disk drives, the monitor, and so
on) and loading DOS.

ROM-DOS performs all 1/0O operations through its device drivers. The device driversinturn use
BIOS calls. Whether ROM -DOS iswriting to the disk or printer, reading from the keyboard,
getting the amount of available RAM or time of day, ROM -DOS uses BIOS calls. By using BIOS
calls to communicate with the hardware, ROM -DOS does not need to be aware of hardware
details.

Most standard PC motherboards include a BIOS specifically configured to operate with the
hardware on the motherboard.

ROM-DOS Kernel

The ROM -DOS kernel isthe heart of ROM -DOS. The kernel provides file and directory
management, input and output through character devices (console, serial port, and printers), along
with time and date support. The kernel also provides the ability to load and execute programs,
manage memory, and make country -specific information available to applications.

The primary purpose of the kernel isto provide the DOS call services (Int 21h) to programs. The
kernel also processes the CONFIG.SY Sfileduring itsinitialization process and loads the initial

Chapter 1, Introduction

program run by ROM -DOS. This program is by default the command interpreter,
COMMAND.COM, athough it may be any application program.

The ROM-DOS kernel, like the BIOS, can execute directly from ROM and does not need to copy
itscodeinto RAM. Likethe command interpreter and other programs, the ROM -DOS kernel can
also load from disk and run in RAM. On disk-based systems the ROM -DOS kernel files are
named IBMBIO.COM and IBMDOS.COM and are hidden from view. You can list these hidden
system files at the command line prompt with the following DIR command.

C\>DIR /as
Command Interpreter

The ROM-DOS SDK includes a program known commonly as the command interpreter or shell.
Named COMMAND.COM, it is, in most cases the first program loaded by ROM -DOS after the
system boots. COMMAND.COM provides the C:\> prompt interface, batch file processing, DIR,
ERASE, and other commands. COMMAND.COM allows the user to enter commands using a
keyboard and shows the results of the commands on the display.

The primary duties of the command interpreter are: processing the AUTOEXEC.BAT batch file as
it startsup, executing internal commands, loading user programs, and executing batch (.BAT)
files. Theinterna commandsinclude DATE, DIR, COPY, TIME, TY PE, and many others.

COMMAND.COM is not the only command interpreter available. The Norton Utilitiesa , for
instance, provides a replacement command interpreter named NDOS. The command interpreter is
loaded by an entry in the CONFIG.SY Sfile such as:

SHEL L=NDGCS. COM

Datalight also offers asmaller version of COMMAND.COM called mini-COMMAND. This
command interpreter requires only 4KB of ROM or disk space, as opposed to the 43K B of
Datalight’s full command interpreter.

ROM-DOS boots directly into any compatible program without the need for acommand
interpreter. Because ROM -DOS systems are sometimes dedicated to a single program, it makes
sense to load that program directly, without the additional overhead of COMMAND.COM.

Using a ROM Disk

On systems that have no physical rotating or solid-state disk, a ROM disk can be used to support
ROM-DOS. ROM -DOS contains a built-in ROM disk driver along with the more familiar floppy
and hard disk drivers. A ROM disk utility, named ROMDISK.EXE, creates a memory image that
includes the files you specify. To usethe ROM disk utility, specify adirectory tree and
ROMDISK.EXE creates an image file suitable for your PROM programmer, complete with all the
files and the directory structure contained in the directory tree. ThisROM disk image can be
placed in the same or different ROM as ROM -DOS.

A ROM disk in adiskless system usually contains COMMAND.COM, user applications and data
files. From the point of view of ROM -DOS, the ROM disk is nothing more than afast write-
protected floppy disk drive.

Another type of disk isamemory disk. Many MS-DOS developers have used RAMDRIVE.SY S
or some other RAM disk equivalent, such as Datalight’s VDISK, to speed development. A ROM
disk isjust aread-only RAM disk. Both RAM and ROM disks are memory disks which, with

Chapter 1, Introduction 7

some special software (a memory disk device driver), appear to DOS as a conventional disk drive.

The directories and files for the disk are located in memory rather than on rotating magnetic
media.

Placing ROM-DOS in a ROM

There are three separate ROM files— the ROM -DOS kernel, ROM disk, and BIOS— that may be
programmed into the target system ROM before attempting a boot. When placing ROM-DOS in
ROM, its kernel must be configured to execute from ROM. The ROM -DOS SDK contains a
utility, BUILD.EXE, to configure the ROM-DOS kernel for a ROM or disk environment.

If the system requires a ROM disk, run the ROMDISK.EXE utility to create the ROM disk image.
If the ROM disk is being programmed into ROM, the ROM -DOS ROM disk driver works as-is for
ROM disks placed within the 1M B real address space. If your ROM disk is to be placed above the
1MB boundary or your hardware is designed for memory paging, a customized memory disk
driver must be created to correctly access the ROM.

If the system requires a custom BIOS, then this ROM must be created and placed on the system.
The following ROM memory map diagram shows a typical memory layout for embedded ROM -

DOS system.
FFFFFh .
BIOS
ROM-DOS kernel . EPROM area
E0000h
ROM disk
D0000h -
not used
A0000h —
Xxxxxh
COMMAND.COM
—RAM area
ROM-DOS data
00700h
BIOS data
00400h
00000h Vectors]

ROM-DOS In ROM Memory Map

8 Chapter 1, Introduction

DOS on a Disk

ROM -DOS does not require any reconfiguration for use on a standard PC platform. A new
bootable disk can be made using either the Datalight SYS.COM or FORMAT.COM utilities. The
SYS.COM and FORMAT.COM utilities place the hidden system files IBMBIO.COM and
IBMDOS.COM on the bootable disk along with the command interpreter COMMAND.COM.

Note: To run SYS.COM or FORMAT.COM, you must boot your system from a disk that
contains the hidden system filesor you can build a ROM -DOS.SY Sfile (which is
equivalent to the hidden system files) as described in ‘ Chapter 4, Building ROM -DOS'
and useit to create a bootabl e disk.

Using ROM-DOS with Flash Memory

ROM -DOS supports the two basic types of flash memory, PCMCIA cards and on-board flash
arrays. ROM-DOS does not directly support PCMCIA cards of any type since thisis handled by
the BIOS in conjunction with DOS loaded device drivers (generally available from BIOS vendors)
called card and socket services. ROM -DOS supports all popular PCMCIA card and socket
services device drivers. Onboard flash arrays can be used as a programmable linear memory area
or as adisk with read/write capabilities, when used in conjunction with aflash file manager such
as Datalight's FlashFX.

ROM-DOS s ROM -disk device driver and ROM -disk building program are suitable for creating
an imageto placein alinear flash memory and then reading the image as aread-only ROM disk (a
ROM disk works with either ROM or flash). The disk image must be programmed into the flash
memory using a custom flash loader utility (typically provided by the hardware vendor) or using a
PROM programmer capable of programming flash devices.

The use of flash memory differs somewhat from ROM. However, there can be advantages. Flash
memory can be less expensive and faster than standard ROM, sometimes even faster than RAM.
The high speed of flash is advantageous for running the ROM -DOS kernel from ROM. Some
hardware is even set up so that the flash can be reprogrammed on-board while in the field, offering
quick and easy updating.

In addition, ROM -DOS includesan ATA device driver named ATA.SY Sthat supports avariety of
ATA cards. Refer to the file ROM-DOS User’'s Guide for more information on this driver.

What is SOCKETS?

Datalight SOCKETSis an Internet protocol software extension to ROM -DOS that provides a
powerful data communication facility whereby embedded systems and users of embedded systems
can communicate with other computers (including PCs and mainframes) and their printers.

What does SOCKETS provide?

Datalight SOCKETS provides standard communications applications and the facilitiesto run
customwritten applications which allows you to:

Run applications on a TCP/IP host system from aremote embedded system.

Chapter 1, Introduction 9

Transfer data between an embedded system and TCP/IP hosts.
Run network aware applications on an embedded system.
Print to an embedded system from TCP/IP hosts and vice versa.

Datalight Sockets consists of :
A TSR kernel:

Connecting to aphysical Ethernet or Token Ring network using a network interface
with associated Packet Driver and/or to a point-to-point serial network using
standard serial communication portswith or without modem dial in/out.
Implementing standard Internet protocols ARP, PPP, LCP, IPCP, PAP, CHAP MD5,
IP, ICMP, IGMP, RIP, UDP, TCP, BOOTP, DHCP and DNS.
Providing IP routing support.
Providing two Application Programming Interfaces (APIs)
Providing a Socket Print client
- Providing a Socket Print Server and LPD Server
C libraries and source code to access the APIsincluding a TCP/IP Sockets library
implementing the BSD Sockets abstraction. The libraries also support 32 bit applications
using a DOS extender.

A Sockets configuration program.
Utility programsto test the network and display the status of the kernel.
Mail programsin source and binary format.

Resident servers for FTP, HTTP and Remote Console including a CGI API for serving
dynamic web-pages and a Remote Consol e Java appl et to emulate a DOS consol e of the
embedded system on a Java capabl e browser.

A Telnet client including an ANSI/VT emulator.
AnFTPclient and asimple HTTP file GET utility.
Print clients for Socket printing and LPD printing (LPR).

A resident FTP API to implement FTP client/server functionality in user written
programs.

A resident RFC compliant NETBIOS API

Chapter 2, About TCP/IP

The following sections contain ageneral description of TCP/IP and provide an introduction to the
operation of TCP (Transport Control Protocol) and IP (Internet Protocol) and its components.

Transmission Control Protocol and Internet Protocol, collectively known as TCP/IP, comprise a
set of computer data-communication conventions or protocols. These protocols were developed
by major users of computer based equipment, principally the U.S. Department of Defense, so that
the equipment supplied by different manufacturers could exchange data and information. TCP and
IP are only two of the major protocolsin a system consisting of many protocols.

TCP/IP Layers

A TCP/IP implementation consists of a series of software layers, where each layer performs

specific functions for the layer above and below it. TCP/IP uses four software layers and one
physical layer, asfollows:

The Application Layer selects the appropriate service for applications.
The Transport Layer provides end to end dataintegrity.

The Network Layer switches and routes information.

The Interface Layer transfers units of information to the physical layer.
The Physical Layer provides transmission onto the network.

Application Layer
[FTP |[Telnet|[sMTP]

|
Transport Layer

TCP " UDp |

Network Layer

|
Interface Layer

|NDIS || oD1 || PKT |

|
Physical Layer
|Ethernet||5erial Linel

12

Chapter 2, About TCP/IP

Client/Server Model

The most commonly used structure in distributed applicationsis the client/server model. In this
model client applications request services from aserver application. The client and server require
aset of rules or protocols that must be implemented at both ends of the connection.

The various protocols may act in a Master/Slave role such as Telnet that is used for remote login,
or may act in an equally responsive role such asthe file transfer protocol (FTP).

File Transfer Protocol (FTP)

The FTP protocol was designed to transfer binary (image) and/or text (ASCII) files between hosts.
FTP usestwo TCP connections, one for exchanging commands and responses in the form of

ASCII strings, the other for the actual datatransfers. FTP isimplemented in two parts, the Server
and the Client. The Server supports multiple, simultaneous, remote users, while the Client
provides an interactive or batch interface to the user to perform remote file and directory
maintenance and file transfers.

File security is controlled by prompting for the user to specify a name and password that have
been configured on the other computer. Provision is made for handling the transfer of files
between machines with differing character sets, end of line conventions, etc.

Unlike network file system protocols for sharing files, the FTP utility isrun only totransfer files
between systems.

Telnet

Mail

Telnet (Network Terminal Protocol) allows users to login on any other host that is connected to
the network. These "remote sessions" are started by specifying the host with which a connection is
required. Once a connection is established, any local keyboard input is relayed to the remote host
and any terminal output from the remoteis displayed on the local screen. Thisismuch like adia-
up connection in that the remote system requires log-in and password procedures, aswould be
encountered in dial-up systems.

At the end of aremote session alogoff command exits the telnet program, and returns the user to
the local computer.

A terminal emulation is normally used on top of Telnet on the client side of the connection.

The Simple Mail Transfer Protocol (SMTP) allows electronic messages to be sent between hosts
on the network.

The SMTP server is used to receive mail and the SMTP client to send mail.

The Post Office Protocol version 3 (POP3) is used to retrieve mail from amail host. The mail host
hosts the POP3 server and a POP3 client resides on a host retrieving the mail.

Chapter 2, About TCP/IP 13

HyperText Transfer Protocol (HTTP)

Hypertext Transfer Protocol isthe backbone protocol used by Browsers on the World Wide Web.
SOCKETS provides HTTP functionality through an embedded web server and various client
applications. Web enabling your device with Datalight SOCKETS will allow easy control of
embedded devices from standard desktop web browsers

Printing

Socket printing is a method of utilising TCP/IP to perform network printing, i.e. printing from any
host on the network to a printer attached to any other host. The source of the printing job usesa
Print Client to open a TCP connection to a Print Server running on the host that has the destination
printer attached to it. The print datais then sent over this connection from the Client to the Server
that passesit on to the printer. The end of the print job is signalled by the Client closing the TCP
connection. Printer status information may be passed back to Client to signal error conditions such
as "Paper out" or "Printer not ready".

Another widely used printing protocol is LPR/LPD. LPR isaprint client submitting print jobs to
LPD whichisaprint server. A single LPD print server can handle multiple printers known by
name as well as multiple queued jobs.

Application Programming Interface (API)

An API isaspecification of the method an application programmer can use to access services
provided by a software module. In the case of anetwork the API specifiestheinterfaceto the
network software.

In TCP/IP the idea of aSocket as the endpoint of a connection is used. A socket then refersto an
abstraction to define the endpoint of a connection asfar asthe API is concerned. A socket can be
created, opened, read, written, closed and deleted in much the same way afileishandled in DOS.
The differenceisthat two sockets must exist, normally on two hosts, before a connection can be
made. A read operation on one side must always have a matching write operation on the other
side.

Another widely used APl isthe NETBIOS API. It differs from the SOCKET API mainly in the
way in which resources on the network are addressed. In the case of the SOCKET API addressing
isdone by using | P addresses and port numbers, but for NETBI OS names are used.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a second-generation, connection-oriented protocol
that corresponds to the Transport layer protocols described in OSl. TCP forms a connection
between the workstation and the system with which it intends to communicate. 1n anetwork,
several systems can communicate across the same network cabling or the same gateways. To
ensure that each transmission shares the transmission media equally, transmitted data are broken
into manageabl e pieces known as segments.

TCPisresponsible for:

14

Chapter 2, About TCP/IP

User

2.10.

Breaking data into the appropriate segments.
Numbering the segments sequentially before sending them.
Reassembling and verifying the segments at the destination.

The sequential numbers are used to reassembl e the segments at the destination. To assist in this
procedure, TCP places a header at the beginning of each segment. The header contains the Source
Port, the Destination Port, the Sequence number, and a checksum.

A checksum is amathematical computation of the octetsin the segment beforeitissent. The
same computation is performed at the destination to verify the integrity of the segment data. If the
checksum results match, an acknowledgement is sent from the destination to the source. If the
checksums do not match, the segment is discarded without an acknowledgement being sent and
the source retransmits the segment.

Datagram Protocol (UDP)

UDP provides a unsequenced, unreliable, connectionless transport service. It can act as an
aternative to TCP for applications that do not require the same amount of control. The Domain
name protocol, Routing Information protocol and the Simple Network Management protocol all
make use of UDP.

Internet Protocol (IP)

The Internet Protocol is a connectionless network layer protocol and was designed to handle a
large number of internetwork connections, for both LAN and WAN applications.

The IPimplementation basically addresses and sends the segments. IP relies on the | P address to
deliver and receive segments:

The IP addressisa 32 bit address assigned to a TCP/IP node. The | P address of each node must
be unique on anetwork, that is, no two nodes anywhere on the network can have the same | P
address.

Since a 32 bit address is cumbersome they are generally represented in dotted decimal notation,
which separates the four bytes of the address with periods. A typical 1P address conversionisas
follows:

Type of Format Example of IP Address

32-bit Binary Format 10000000 01100101 01100110 01100111
Hexadecimal Format 80 65 66 67

Decimal Format 128 101 102 103

Decimal Notation 128.101.102.103

Although the | P address is represented as a single value, it contains two pieces of information:

Thefirst part of the addressis your network identification. All machines on the same
network have the same prefix.

Chapter 2, About TCP/IP 15

The second part of the addressis your host identification. No two nodes share the same
suffix.

Internet addresses fall into three major addressing classes. The address class that you request
should be based on the maximum number of network nodesin your system.

Class IP Address Range No of Local Nodes
A 0.0.0.1 to 127.255.255.254 1-16,777,214

B 128.0.0.1 to 191.255.255.254 1-65,534

C 192.0.0.1 to 223.255.255.254 1-254

Thetable above shows the three Internet address classes with their associated | P address range and
the number of local nodes possible per class.

Internet Control Message Protocol (ICMP)
ICMPisusedfor IP error control and diagnostic. It provides error messages such as:
« destination unreachable
« timetolive (ttl) expired
» header problems

ICMP a'so support echo request and echo reply, better known as a ping operation to test a host for
reachability and response time.

Routing

Routers or Gateways are | P nodes on a network that connect more than one network together. This
allows aworkstation on one network to connect and communicate with aworkstation on another
network. Routers are often computers that are configured to have more than one network interface.
For example when a segment is sent, if the destination network |D matches the source network ID
then it issent directly to the IP address. If the ID's do not match, the segment is sent to arouter
that knows the ID's of the other connected networks. The segment is forwarded to that router and
then ultimately to the IP address. Routing can be applied to Wide Area Networks (WAN) as well
as Local Area Networks.

TCRAF Host
M=, Mainframe, et

5

sockets LAN FPP .
]
o
Sockets Sockets

IP Router/Gateway (LAN/WAN)

16 Chapter 2, About TCP/IP

Routing Information Protocol (RIP)

RIP allows routers to advertise availabl e routes and endpoint workstations and routers to make use
of the advertised routes to automatically determine the best route to a destination. Each RIP route
has ametric or cost associated with it aswell asalimited lifetime so that the network can
dynamically adjust to route changes like the failure of alink or router in the network. Both RIP

versions 1 and 2 are supported.

Address Resolution Protocol (ARP)

ARP provides mechanisms for hosts to search and find the MAC (Ethernet) addresses of other
hosts on the network. SOCKETS supports ARP for Ethernet and Token Ring controllers.

DHCP ARP isused to ensure that there is no duplicate IP addresson a LAN.

Gratuitous ARP is used to inform other hostson aLAN that the MAC address associated with a
specific | P address, may have changed.

Proxy ARP is utilized for gateways. A route can be designated as supporting proxy ARP. When a
gateway receives an ARP request for ahost and it has aroute to reach that host, it responds to the
ARP request.

Note: Proxy ARP should be used with care and not in conjunction with RIP. If more than one
host responds to an ARP request it may cause system problems.

BOOTP

BOOTPisaUDP/IP based protocol that provides a meansto assign an | P address to a booting
host dynamically and without user supervision. BOOTP can also supply the net mask, host name,
and address of adomain name server. One obvious advantage of this procedure is the centralized
management of network addresses, which eliminates the need for per-host unique configuration
files. At least one BOOTP server isrequired on the network.

Dynamic Host Configuration Protocol (DHCP)

DHCP isa UDP/IP based protocol that provides a means to assign the I P address dynamically to a
booting host and without user supervision. It can also supply the net mask, host name, address of
adomain name server, and other parameters. An advantage of this procedure isthe centralized
management of network addresses, which eliminates the need for per-host unique configuration
files. DHCP provides for address |eases and is a better choice than BOOTP.

Chapter 2, About TCP/IP 17

Point-to-Point Protocol (PPP)

PPP is used on point to point connections eg serial links to provide an interface to networking
layersincluding I P. It negotiates configuration settings like header compression at the link level
using the Link Control Protocol (L CP), authentication using an authentication protocol like
Password Authentication Protocol (PAP) or Challenge Handshake Authentication Protocol
(CHAP) and transport layer settings like the | P address using the Internet Protocol Control
Protocol (1PCP).

Serial Line IP (SLIP)

SLIP uses standard asynchronous lines to transfer 1P datagrams. The SLIP provided by
SOCKETS is compatible with that used on UNIX systems. Error checking is provided by
checksumsthat are part of 1P, TCP and UDP.

Compressed Serial Line IP (CSLIP)

CSLIPisan enhancement of SLIP by implementing Van Jacobson header compression. CSLIP
uses more memory than SLIP but provides better throughput and faster response times, especially
on small packets.

Media Support

Various types of media can be used for TCP/IP communication. A brief description of the
supported mediatypes follows.

Ethernet and Token Ring

The Packet Driver standard is supported. A Packet Driver is normally supplied by the
manufacturer of the network interface controller. Numerous freeware Packet Drivers are also
available.

Serial Interface

The standard PC serial interface (COM port) with or without modem dialing/answering is
supported by SOCKETS for SLIP, CSLIP or PPP connections.

References

The formal network standards for the TCP/IP protocol suite is available as a set of documents
known as Requests for Comments (RFCs).

Specificationsfor IP aregivenin:

« ARPA RFC-791
* MIL-STD-1777

18

Chapter 2, About TCP/IP

Specificationsfor TCP are givenin:

« ARPA RFC-793
 MIL-STD-1778

Specificationsfor FTP are givenin:

+ ARPA RFC-959

Chapter 3, Programming Reference

Part of the strength of ROM -DOS and SOCKETSistheir accessibility to programmers. The
various libraries and APIs documented in this chapter allow the engineer full accessto the
documented and undocumented interfaces within the DOS kernel and SOCKETS kernel.

Applications developed using these libraries will be compatible with this and future versions of
ROM-DOS and SOCKETS, and indeed can be used with other operating systems or compatible
application programming interfaces.

Library Use/Linking

Disclaimer

There are other functionsin the provided libraries that are not yet documented. Use of these
functionsisstrongly discouraged.

Compilers Supported

These libraries were built in 16-bit DOS mode with Borland C 5.02 and Borland TASM 4.1, and
al thelibrary functions have been extensively tested in those environments. Additionally,
SOCKETS provides support for the MSVC 1.52 compiler.

Memory Models

The libraries for ROM -DOS, SOCKETS Basic TCP/IP interface, and SOCKETS Advanced
TCP/IP interface are provided in Compact, Small, Medium, and Large models.

Library and Header Locations

The libraries for ROM -DOS are |located in the LIBS subdirectory of the ROMDOS subdirectory.
Theincludefilesare similarly located in the INCLUDE subdirectory of the ROMDOS
subdirectory.

Thelibraries for SOCKETS Basic and Advance TCP/IP interfaces are located in the L1B
subdirectory of the SOCKETS subdirectory. Theincludefiles are similarly located in the
INCLUDE subdirectory of the SOCKETS subdirectory.

Header Dependencies

In order to usethe ROM -DOS libraries, you must include the appropriate header files. These three
filesMUST beincluded first, in this order:
DATALGHT. H

DOSTRUCT. H
DOSDEF. H

20 Chapter 3, Programming Reference

Following this, you may include whichever of the remaining header files you require for library
usage. For example, to use the function AddQuad() you must include DL64.H.

Aswiththe ROM -DOS libraries, to use the SOCKETS libraries, you must include the appropriate
header files. These header filesMUST beincluded in this order:

COWPI LER H
CAPI . H

If the SOCKETS Advanced TCP/IP interface is being used, then the header filesMUST be
included in this order:

COWPI LER H
CAPI . H
SOCKETS. H

Sample Code

ROM-DOS sample codeis located within the ROMDOS tree. No added documentation for these
examplesis provided, but the comments should prove sufficient.

Sample code for SOCKETS islocated within the SOCKETS tree.

Contacting Support

If additional information or assistance is heeded, please see the section “Requesting Technical
Assistance” on page 2.

support@datalight.com

ROM-DOS Libraries

Many modern DOS kernels, such as ROM -DOS, provide support for FAT32, Long Filenames, and
LBA bios functions. Unfortunately, most C compilers have little more than DOS.H and BIOS.H,
which provide accessto the basic 16 bit functions only.

The ROM -DOS librariesfill that gap. The functions documented below provide BIOS level
access to modern LBA drives, a standard interface to the Long Filename Functions of Interrupt
0x21, and mathematics using four byte Quad words.

In addition, Datalight has created a set of “ Smart” functions, which make the decision of whether
to use the Long Filename functions or the standard functions at runtime. For example, instead of
fopen(), you can now use SmartCreateOpenFile(), which will work on avariety of kemels and
file systems.

Function Reference
The following sections describe the individual functions of the ROM -DOS libraries.

Chapter 3, Programming Reference 21

AddQuad()

The AddQuad() function adds an unsigned quad value to the referenced quad word, storing the
result in that same location.

C syntax
bool PASCAL AddQuad(uquad * pDstQuad, uquad * pSrcQuad);
Parameters
pDstQuad
Pointer to one summand and the destination quad word structure.

pSrcQuad
Pointer to the other summand.

Return value
Returns one on success, zero on afailure or overflow.

AddQuadLong()

The AddQuadL ong() function adds an unsigned long value to the referenced quad word, storing
the result in that samelocation. If you are using a constant, this function will show better
performance than AddQuad().

C syntax
bool PASCAL AddQuadLong(uquad * pQuad, ulong ulValue);

Parameters

pQuad
Pointer to one summand and the destination quad word structure.

ulValue
An unsigned long value to add to pQuad.

Return value
Returns one on success, zero on afailure or overflow.

ComputeENAMEChecksum()

The ComputeENAM EChecksum() function computes the one byte checksum on an ENAME.
The ENAME isthe eight characters of the short filename, followed by the three character
extension with no period. This checksum is stored in the Long Filename directory entries for the
file.

C syntax

bool PASCAL ComputeENAMEChecksum(char far * szZENAME, uchar far *
pucChecksum);

22 Chapter 3, Programming Reference

Parameters
sZzENAME
The zero teeminated ENAME string to checksum.
pucChecksum
The far pointer to the location to store the one byte checksum.

Return value
Returns TRUE if the function was successful, otherwise FALSE.

DivideQuadByUnsigned()

The DivideQuadByUnsigned() function performs an integer style division of the value in the
referenced quad word by the divisor, returning both the quad word result and the unsigned
remainder. Thisfunction has no return value, astheonly failureisadivide by zero. This result
will trigger the Divide By Zero interrupt.

C syntax
void PASCAL DivideQuadByUnsigned(uquad * ugpQuad, unsigned uDivisor, unsigned
*upRemainder, uquad * pugResult);

Parameters

ugpQuad
Pointer to the dividend, a quad word structure.

uDivisor

The divisor.
upRemainder

Pointer to the remainder of the division.
pugResult

Pointer to the quotient, a quad word structure.

Return value
None.

DIBiosGetDiskStatus()

The DIBiosGetDiskStatus() function performs an Interrupt Ox13, function 0x01, then stores the
result in the BiosError field.

C syntax
int PASCAL DIBiosGetDiskStatus(int iDrive);

Parameter
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for a hard drive,
thusthe first hard drive is 0x80.

Chapter 3, Programming Reference 23

Return value

Returns one on success, zero on afailure. Additionally, any error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

DIBiosGetDriveParameters()

The DIBiosGetDriveParameters() function performs an Interrupt 0x13, function 0x08, which
returns the parameters of the selected drive in the structure specified.

C syntax
bool PASCAL DIBiosGetDriveParameters(int iDrive, PBDP pbdpParameters);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for ahard drive,
thusthefirst hard drive is 0x80.
pbdpParameters

A structure to be filled with appropriate values for drive type, heads, tracks, and
sectors per track. See DLINT13.H for a complete description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

DIBiosReadSectors()

The DIBiosReadSector s() function performs an Interrupt 0x13, function 0x02, which reads a
number of disk sectorsinto a provided data area.

C syntax
bool PASCAL DIBiosReadSectors(int iDrive, PBDTP p bdtpPacket);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for a hard drive,
thusthe first hard driveis 0x80.
pbdtpPacket

A structure indicating the read location, number of sectorsto read, and the
destination pointer. See DLINT13.H for acomplete description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

24 Chapter 3, Programming Reference

DIBiosResetDisk()

The DIBiosResetDisk() function performs an Interrupt 0x13, function 0x00, in which the
disk controller recalibrates the drive heads, causing a seek to track zero.

C syntax
bool PASCAL DIBiosResetDisk(int iDrive);

Parameter
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for a hard drive,
thusthe first hard drive is 0x80.
Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

DIBiosVerifySectors()

The DIBiosVerifySector s() function performs an Interrupt 0x13, function 0x04, which compares
sectorsin the source pointer with what is read from the drive location specified.

C syntax
bool PASCAL DIBiosVerifySectors(int iDrive, PBDTP pbdtpPacket);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for ahard drive,
thusthefirst hard driveis 0x80.
pbdtpPacket
A structure indicating the read location, number of sectors to read and compare, and
the source pointer. See DLINT13.H for a complete description of this packet.
Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

DIBiosWriteSectors()

The DIBiosWriteSector s() function performs an Interrupt 0x13, function 0x03, which writes a
number of sectors to the disk location specified.

C syntax
bool PASCAL DIBiosWriteSectors(int iDrive, PBD TP phdtpPacket);

Chapter 3, Programming Reference 25

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for a hard drive,
thusthefirst hard drive is 0x80.
pbdtpPacket

A structure indicating the write location, number of sectorsto write, and the source
pointer. See DLINT13.H for a complete description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

dICheckDOSError

The dICheckDOSError() function provices access to the internally stored return state from the
most recent Long Filename function.

C syntax
int PASCAL dICheckDOSError(void);

Parameters
None.

Return value
This function returns the last error state set by a Long Filename library function.

DIGetBiosError()

The DIGetBiosError () function returns the value stored in an internal variable. This corresponds
to the table of errorsreturned by the various Interrupt 0x13 functions.

C syntax
int PASCAL DIGetBiosError(void);

Parameters
None.

Return value

This function returnsthe last BIOS error state set by afunction from the Datalight BIOS
library.

dlinWindows()

The dlInWindows() function is used to determineif the operating kernel is Windows.

26

Chapter 3, Programming Reference

C syntax
bool PASCAL dlinwWindows(void);

Parameters
None.

Return value
Returns TRUE if windows is running, otherwise FAL SE.

dlisFat32World()

ThedllsFat32World() function is used to determine if the operating system supports DOS 7.1
compatible functions (aka FAT32 functions).

C syntax
bool PASCAL dlisFat32World(void);

Parameters
None

Return value
Returns TRUE if we arein aDOS 7.1 (FAT32) environment.

DILbaGetDriveParameters()

The DIL baGetDriveParameter s() function performs an Interrupt Ox13, function 0x48. LBA is
supported on most modern BIOSes, and is required for driveslarger than 8 gigabytes.

C syntax
bool PASCAL DILbaGetDriveParameters(int iDrive, PEBDPT pebdptParameters);

Parameters
iDrive
The physical hard drive number in the machine, starting at 0x80, since hit 8 is set for
ahard drive.
pebdptParameters
A structure, the standard Extended Bios Device Parameter Table, to contain the
returned values. See DLINT13.H for a complete description of this packet.
Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt O0x13 is stored internally, and is accessible from DIGetBiosError ().

Chapter 3, Programming Reference 27

DILbaReadSectors()

The DIL baReadSector s() function performs an Interrupt 0x13, function 0x42, which reads sectors
from an LBA drive, using the LBA sector offset instead of the cylinder, head, and track
combination. LBA issupported on most modern BIOSes, and is required for drives larger than 8
gigabytes.

C syntax
bool PASCAL DILbaReadSectors(int iDrive, PDAP pdapAddressPacket);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for ahard drive,
thusthefirst hard drive is 0x80.

pdapAddressPacket

A structure indicating the read location, number of sectors to read, and the
destination pointer. See DLINT13.H for a complete description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

DILbaVerifySectors()

The DIL baVerifySectors() function performs an Interrupt 0x13, function 0x44, which reads
sectorsfrom an LBA drive, using the LBA sector offset instead of the cylinder, head, and track
combination. These sectors are compared with the source data pointed to by the structure, for
verification. LBA is supported on most modern BIOSes, and is required for drives larger than 8
gigabytes.

C syntax
bool PASCAL DILbaVerifySectors(int i Drive, PDAP pdapAddressPacket);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for ahard drive,
thusthe first hard driveis 0x80.
pdapAddressPacket
A structure indicating the verify location, number of sectorsto read and compare,
and the source pointer. See DLINT13.H for a complete description of this packet.
Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

28 Chapter 3, Programming Reference

DILbaWriteSectors()

The DILbaWriteSector s() function performs an Interrupt 0x13, function 0x43, which writes
sectorsto an LBA drive, using the LBA sector offset instead of the cylinder, head, and track
combination. LBA issupported on most modern BIOSes, and is required for drives larger than 8
gigabytes.

C syntax
bool PASCAL DILbaWriteSectors(int iDrive, PDAP pdapAddressPacket);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for a hard drive,
thusthefirst hard drive is 0x80.

pdapAddressPacket

A structure indicating the write location, number of sectors to write, and the source
pointer. See DLINT13.H for a complete description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, the error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

DISmartLbaGetDriveParameters()

The DISmartL baGetDriveParameter s() function determines at runtime whether to use the LBA
get drive parameters call or the standard BIOS function. The results of either are storedin a
common structure, which is used for other Smart functions.

C syntax
bool PASCAL DISmartL baGetDriveParameters(int iDrive, PLSIP plsipInfo);

Parameters
iDrive
The physical drive number in the machine, starting at 0. Bit 8 is set for ahard drive,
thusthefirst hard drive is 0x80.
plsiplnfo
A structure containing the number of sectors on the drive, drive type, and aso the
standard cylinder, head, and track geometry.
Return value

Returns one on success, zero on afailure. Additionally, any error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

Chapter 3, Programming Reference 29

DISmartLbaReadSectors()

The DISmartL baReadSector s() function determines at runtime whether to use the LBA read

sectors call or the standard BIOS function. The results of either are stored in the appropriate
buffer.

C syntax
bool PASCAL DISmartL baReadSectors(PL SIP plsiplnfo, PLSTP plstpTransfer);

Parameters
plsiplnfo

A structure containing the number of sectors on the drive, drive type, and also the
standard cylinder, head, and track geometry. See DLINT13.H for a complete
description of this structure, which is returned by

DISmartL baGetDrivePar ameter s().

plstpTransfer

A structure containing transfer information, such as the read location, number of
sectors to read, and the destination pointer. See DLINT13.H for acomplete
description of this packet.

Return value

Returns one on success, zero on afailure. Additionally, any error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

DISmartLbaVerifySectors()

The DISmartL baVerifySector s() function determines at runtime whether to use the LBA read

sectors call or the standard BIOS function. The results of either are verified against data stored in
the buffer.

C syntax
bool PASCAL DISmartLbaV erifySectors(PL SIP plsiplnfo, PLSTP plstpTransfer);

Parameters
plsipinfo
A structure containing the number of sectors on the drive, drive type, and also the
standard cylinder, head, and track geometry. See DLINT13.H for acomplete
description of this structure, which is returned by
DISmartL baGetDriveParameter ().
plstpTransfer

A structure containing transfer information, such as the read location, number of
sectors to read, and the source pointer for the compare. See DLINT13.H for a

complete description of this packet.
Return value

Returns one on success, zero on afailure. Additionally, any error code returned from
Interrupt 0x13 is stored internally, and is accessible from DIGetBiosError ().

30 Chapter 3, Programming Reference

DISmartLbaWriteSectors()

The DISmartL baWriteSector () function determines at runtime whether to use the LBA write

sectors call or the standard BIOS function. The results of either are stored in the appropriate
buffer.

C syntax
bool PASCAL DISmartLbaWriteSectors(PLSIP plsipinfo, PLSTP plstpTransfer);

Parameters
plsiplnfo
A structure containing the number of sectors on the drive, drive type, and also the
standard cylinder, head, and track geometry. See DLINT13.H for a complete
description of this structure, which is returned by
DISmartL baGetDrivePar ameter s().

plstpTransfer

A structure containing transfer information, such as the write location, number of
sectors to write, and the source pointer. See DLINT13.H for acomplete description
of this packet.

Return value

Returns one on success, zero on afailure. Additionally, any error code returned from
Interrupt Ox13 is stored internally, and is accessible from DIGetBiosError ().

DriveSupportsLFNs()

The DriveSupportsL FNs() function tests whether the specified drive supports Long Filenames.

All the physical drivesin aspecific LFN kernel will support LFNs, but certain Network or ATAPI
devices (such as CD-ROM) might not.

C syntax
bool DriveSupportsL FNs(uchar ucDrive);

Parameter
ucDrive
The DOS drive parameter (O=the current drive, 1=A:, 2=B:, etc.).

Return value
Returns TRUE if the drive supports LFNs, otherwise FALSE.

GetSmartFindLFNAddress()

The GetSmartFindL FNAddress() function returns the address of the Long File Name string
from within aninternal structure. This value should be copied immediately, asit will go stale with
many subsequent FindFirst and FindNext calls.

Chapter 3, Programming Reference 31

C syntax
void PASCAL GetSmartFindLFNAddress(char ** pszLFN);

Parameter

pszLFN
A location to contain the returned character pointer.

Return value
Returns the address of the LFN from an internal LFN find structure.

LFNChangeDirectory()

The LFNChangeDirectory() function will change to a given directory using Long Filename
paths. This function also adjusts for abug in the current "Windows NT" implementation of the
LFN functions, which change the current drive on thiscall.

C syntax
bool PASCAL LFNChangeDirectory(char szLongName[]);

Parameter
szPathName
The zero terminated argument string for the desired path.

Return value

Returns TRUE if the change directory was successful, otherwise FALSE. Any error will
be available through dICheckDOSError ().

LFNCreateOpenFile()

The LFNCreateOpenFile() function is used to create or open aLong Filename.

C syntax
bool PASCAL LFNCreateOpenFile(int iModeFlags, int iAttr, int iAction, char

szLongName[], int iAliasHint, int *pHandle, int * pActionTaken);
Parameters

iModeFlags
Various flags for the file open mode, as defined in DLLFN.H:

#def i ne OPEN_ACCESS READONLY 0
#def i ne OPEN_ACCESS WRl TEONLY 1
#def i ne OPEN_ACCESS_READVR TE 2
#defi ne OPEN_ACCESS RO NOMCDLASTACCESS 4
#defi ne OPEN_SHARE_COMPATI BLE 0
#def i ne OPEN_SHARE DENYREADWRI TE 0x10
#def i ne OPEN_SHARE DENYWR TE 0x20
#def i ne OPEN_SHARE_DENYREAD 0x30
#def i ne OPEN_SHARE DENYNONE 0x40
#defi ne OPEN_FLAGS_NO NHERI T 0x80

#defi ne OPEN_FLAGS_NO BUFFERI NG 0x100

32 Chapter 3, Programming Reference

#defi ne OPEN_FLAGS_NO COMPRESS 0x200
#define OPEN FLAGS ALI AS H NT 0x400
#def i ne OPEN_FLAGS_NOCRI TERR 0x2000
#defi ne OPEN_FLAGS COW T 0x4000
iAttr
The desired attribute for the resulting file, as defined in DLLFN.H:
#defi ne A NORVAL 0x00
#defi ne A READONLY 0x01
#defi ne A_H DDEN 0x02
#define A SYSTEM 0x04
#define A VOLUME 0x08
#define A SUBD R 0x10
#define A ARCH VE 0x20
#define A ALLDIR 0x17
iAction
A flag used to indicate whether a Create, Open or Truncate is desired, as defined in
DLLFN.H:
#define FI LE_CREATE 0x10
#defi ne FI LE_OPEN 1
#defi ne FI LE_TRUNCATE 2
szl ongName
The zero terminated Long Filename.
iAliasHint

If the proper bit flag is set in iModeFlags (OPEN_FLAGS ALIAS HINT), this
value will be used (if possible) to create the short name alias.

pHandle
The returned file handle which can be used to further access thefile.

pActionTaken

The returned action taken by the function; whether it Opened, Created or Truncated
afile. For useful #defines, look in the usual spot.

Return value

Returns TRUE if the file is opened or created, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNDeleteFiles()

The L FNDeleteFiles() function removes a Long Filename from the drive and/or path specified in
the szLongMask. The search attributes are not used unless wild cards are OK.

C syntax
bool PASCAL LFNDeleteFiles(int iAttrs, char szLongMask[], bool bWildOK);

Parameters
1Attr
The "must match" and "search” attributes, as defined in DLLFN.H:

#defi ne MUST_MATCH ATTR(a) ((int)(a)<<8)
#defi ne SEARCH ATTR(a) ((int)(a)&xFF)
#defi ne A NORVAL 0x00

#defi ne A READONLY 0x01

Chapter 3, Programming Reference 33

#define A H DDEN 0x02
#define A SYSTEM 0x04
#define A VOLUME 0x08
#define A SUBDI R 0x10
#define A _ARCH VE 0x20
#define A ALLDR 0x17
szl.ongMask
The zero terminated Long Filename or Long Filename mask argument.
bWildOK
Set to TRUE if wildcards are acceptable. If FALSE, the search attributes are also
ignored.
#defi ne DEL_NOW LD 0
#define DEL_WLD 1

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNEndArg()

The LFNENdAr g() function moves the pointer to the end of the current argument. This function
isaware of international characters and quoted strings, treating the latter as one argument.

C syntax
char * PASCAL LFNEndArg(char *szArg);

Parameter
SszArg
A pointer to the zero terminated argument string.

Return value

Returns a pointer to the first space after the argument, or the terminating NULL in the
case of afinal argument which is not followed by spaces.

LFNExtendedGetSetAttr()

The LFNExtendedGetSetAttr () function performs a number of tasks, based on the value passed
intheiAction field. Theseinclude getting and setting various file attributes, dates, and times. An
additional action returnsthefilesize.

C syntax
bool PASCAL LFNExtendedGetSetAttr(int iAction, FileTime *pTime, int * pAttr, char
szLongName][], FileDate * pDate, int * pMilli, long * pFileSize);
Parameters
iAction
The action that the function isto take, as defined in DLLFN.H:
#defi ne EXT_ACT_CET_ATTR 0

34 Chapter 3, Programming Reference

#define EXT_ACT_SET_ATTR 1
#define EXT_ACT_GET_PHYSI CAL_SI ZE 2
#define EXT_ACT_SET_LAST WRI TE_DATE_TI ME 3
#defi ne EXT_ACT_GET_LAST WRI TE_DATE_TI ME 4
#define EXT_ACT_SET_LAST_ACCESS DATE 5
#defi ne EXT_ACT_GET_LAST_ACCESS DATE 6
#defi ne EXT_ACT_SET_CREATI ON_DATE TI ME 7
#defi ne EXT_ACT_GET_CREATI ON_DATE TI ME 8
pTime
An unsigned integer containing the time, which is used for some actions.
PAttr
A bitfield containing the file attributes, where are used for some actions.
szLongName
The zero terminated Long Filename.
pDate
An unsigned integer containing the date, which is used for some actions.
pMilli

The value representing the milliseconds portion of the file time, in numbers of 10
millisecond units (i.e. 13 = 130 milliseconds).

pFileSze
A pointer to the unsigned long field to receive the files size from some actions.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNGetCreateTimeDate()

The LFNGetCreateTimeDate() function returns the creation date and time of the specified file.
This datais returned from the Long Filename directory structure, and so may not be available
from conventional short-namefiles.

C syntax

bool LFNGetCreateTimeDate(int nHandle, FileTime *pCreateTime, FileDate
*pCreateDate, int * pCreateMilli);

Parameters
nHandle
The DOSfile handle

pCreateTime

The location to store the DOS time structure for the file. See DLLFN.H for a
complete definition of this structure.

pCreateDate

The location to store the DOS date structure for the file. See DLLFN.H for a
compl ete definition of this structure.

Chapter 3, Programming Reference 35

pCreateMilli

The location to store the value representing the milliseconds portion of thefile time,
in numbers of 10 millisecond units (i.e. 13 = 130 milliseconds).

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNGetCurrentDirectory()

The LFNGetCurrentDirectory() function returns the current working directory of the selected
drive.

C syntax
bool PASCAL LFNGetCurrentDirectory(int nDrive, char szLongName[]);

Parameters
nDrive
The DOS drive parameter (O=the current drive, 1=A:, 2=B:, etc.).

szL.ongName
The location to receive the zero terminated Long Filename path.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNGetFullPath()

The LFNGetFullPath() function takes the passed short, long, mixed or relative path, and returns
the short, long, or mixed version of the path. Depending on the flags, it can also expand the true
path of aSUBSTed drive.

C syntax
bool PASCAL LFNGetFullPath(int iFlags, char szSrcLongName[], char
szDstLongName[]);
Parameters
iFlags
Various flags indicating the type of path data to return, as defined in DLLFN.H:

#def i ne FULLPATH_NOSUBST 0

#defi ne FULLPATH_SUBST 0x8000

#def i ne FULLPATH_DEFNANME (0 | FULLPATH_SUBST)
#def i ne FULLPATH_SHORTNAME (1| FULLPATH_SUBST)
#def i ne FULLPATH_LONGNAVE (2 | FU.LPATH_SUBST)

szScLongName

The zero terminated source path, with or without Long Filenames and relative
components.

36 Chapter 3, Programming Reference

szDstLongName
The location to store the zero terminated result of the function.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNGetLastAccessDate()

The LFNGetL astAccessDate() function returns the last accessed date of the specified file. This

dataisreturned from the Long Filename directory structure, and so may not be available from
conventional short-namefiles.

C syntax
bool LFNGetL astAccessDate(int nHandle, FileDate * pLastAccessDate);

Parameters
nHandle
The DOSfile handle
pLastAccessDate

The location to store the DOS date structure for the file. See DLLFN.H for a
compl ete definition of this structure.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNGetVolumelnformation()

The LFNGetVolumel nfor mation() function returns some specific information about the file
system on the selected volume, including filename lengths, pathname lengths, and other useful
flags.

C syntax
bool PASCAL LFNGetVolumelnformation(int iBufSize, char szRootName(], char
szFileSystemName][], int *pFlags, int *pMaxName, int * pMaxPath);
Parameters
iBufSize
The size of the szFileSystemName buffer. 32 bytes should be sufficient.

szRootName
Theroot of the selected drive, in fairly specific format (e.g. "C:\").
szFileSystemName

A buffer to receive the zero terminated name of the filesystem (e.g. "FAT", "NTFS"
or "CDFS")

Chapter 3, Programming Reference

pFlags
The file system description flags, defined in DLLFN.H:
#def i ne FS_CASE_SENSI Tl VE 0x0001
#define FS_CASE | S PRESERVED 0x0002
#define FS_UN CODE_ON DI SK 0x0004
#define FS_LFN_API S 0x4000
#def i ne FS_VOLUMVE_COVPRESSED 0x8000
pMaxName
The location where the maximum length of a filename is returned.
pMaxPath

The location where the maximum length of afilepath is returned.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNMakeDirectory()

The LFNMakeDirectory() function creates anew directory as specified, and takes a short or
Long Pathname as a parameter.

C syntax
bool PASCAL LFNMakeDirectory(char szLongName[]);

Parameter
szl ongName
The zero terminated Long Pathname directory to create.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNNextArg()

The L FNNextArg() function returns the pointer to the next argument after the current one, and
thus can be used to "walk" an argument string. Thisfunction treates quoted strings as one
argument.

C syntax
char * PASCAL LFNNextArg(char *szArg);

Parameter
szArg
A pointer to the zero terminated argument string.

38 Chapter 3, Programming Reference

Return value

Returns the start of the next argument, or the trailing NULL if there are no more
arguments.

LFNPresent()

The L FNPresent() function checks the kernel to seeiif it supports Long Filenames. On
subseguent calls, it returns the saved result of thefirst call.

C syntax
bool PASCAL LFNPresent(void)

Parameters
None.

Return value
Returns TRUE if the kernels supports Long Filenames, or FALSE if not.

LFNRemoveDirectory/()

The LFNRemoveDirectory() function removes the specified directory, and takes a short or Long
Pathname as a parameter.

C syntax
bool PASCAL LFNRemoveDirectory(char szLongName]]);

Parameters

szL.ongName
The zero terminated L ong Pathname directory to remove.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LFNRenameFile()

The L FNRenameFile() function changes the files name from the old value to the new. Thisisan
ateration of the directory entry only; the actual contents of the file remain unmoved.

C syntax
bool PASCAL LFNRenameFile(char szOldLongName[], char szNewLongName[]);

Chapter 3, Programming Reference 39

Parameters
szOldLongName
The zero terminated short or Long Filename file entry to rename.

szNewLongName
The new zero terminated short or Long Filename of the target file.

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LENSkipWhite()

The LFNSkipWhite() function noves past standard white space characters to the next character
that is not white space.

C syntax
char * PASCAL LFNSKipWhite(char *szArg);

Parameter
szArg
A pointer to the zero terminated argument string.

Return value
Returns the character pointer to the next non-whitespace character.

LFNSplitFileName()

The LFENSplitFileName() function takes afull path and splitsit into the component parts-- the
drive, directory, and filename.

C syntax

int PASCAL LFNSplitFileName(char *szSrcName, char *szDrive, char *szDirectory,
char *szFileName)

Parameters
szScName
Thefull path of afile. If the drive letter is not included, the current drive will be
assumed.
szDrive
A location to store the drive | etter and colon (e.g. "D:").

szDirectory

A location to store the full path leading to the file. Relative paths will not be
expanded (e.g. "..\").

40 Chapter 3, Programming Reference

szFileName

A location to store the file name and extension. Wild cards will not be expanded
(e.9. "NAME* *"),

Return value

Returns a byte of flagsindicating what actions were performed, and whether any wild
cards were found. From DLLFN.H come these defintions:

#defi ne SPLI T_W LDCARDS 0x01
#define SPLI T_FI LENAMVE 0x04
#defi ne SPLI T_DI RECTORY 0x08
#define SPLI T_DRI VE 0x10

LFENStripArgQuotes()

The LENStripArgQuotes() function removes all matched pairs of quotes from the passed string.
Thus, <"hello"" world"> becomes <hello world>. Thisisauseful function when dealing with
quoted parameter strings, but can also be used to process user input.

C syntax
void PASCAL LFNStripArgQuotes(char * pszArg);

Parameters
pszArg
A pointer to the zero terminated argument string.

Return value
None

LFNSubstFunction()

The LFENSubstFunction() function performs the three valid subst functions of create, terminate,
and query. Thisfunction allows for short and L ong Filename substs.

C syntax
bool PASCAL LFNSubstFunction(int iFunction, int iDrive, char szL ongName[]);

Parameters
iFunction
The function to perform, as defined in DLLFN.H:
#defi ne LFN_CREATE SUBST 0
#defi ne LFN_TERM NATE_SUBST 1
#defi ne LFN_QUERY_SUBST 2
iDrive

The DOS drive parameter (O=the current drive, 1=A:, 2=B:, etc.). Note that drive
"0" (current drive) is not allowed for function "0" (create subst).
szlongName

The zero terminated Long Pathname directory to subst, or a buffer for the result of
the query.

Chapter 3, Programming Reference 41

Return value

Returns TRUE if the function was successful, otherwise FALSE. Any error will be
available through dICheckDOSError ().

LbaToCHS()

The LbaToCHS() function converts from alinear LBA sector to CHS geometry for the specified
drive. Note that you must pass the drive information structure, which contains the maxinum
values, for these calculations to be accurate.

C syntax

bool PASCAL LbaToCHS(PLSIP plsiplnfo, ulong ulSector, int * piTrack, uchar
*pucHead, uchar * pucSector)

Parameters

plsiplnfo
A structure containing the number of sectors on the drive, drive type, and also the
standard cylinder, head, and track geometry. See DLINT13.H for acomplete
description of this structure, which isreturned by
DISmartL baGetDriveParameter ().

ul Sector
The unsigned long sector to convert.

piTrack
A pointer to the integer where the track number will be returned.
pucHead
A pointer to the unsigned character where the head number will be returned.

pucSector
A pointer to the unsigned character where the sector number will be returned.

Return value
Returns TRUE if the function is successful, or FALSE if any error is encountered.

QuadMultiply()

The QuadM ultiply() function performs the integer multiplication of two values of up to unsigned
long length. Theresult isreturned in aquad word structure.

C syntax
uquad PASCAL QuadMultiply(ulong ulVauel, ulong ulValue?);

Parameters
ulValuel
The multiplicand, which is a number to be multiplied.
ulValue2
The multiplier, which is a number to be multiplied.

Chapter 3, Programming Reference

Return value
Returns a quad word structure containing the product of the multiplication.

SmartChangeDirectory()

The SmartChangeDir ectory() function will change to a given directory, and can operate with
either standard or Long Filename paths. This function also adjusts for abug in the current
"Windows NT" implementation of the LFN functions, which change the current drive on this call.

C syntax
bool PASCAL SmartChangeDirectory(char * szPathName);

Parameter

szPathName
The zero terminated argument string for the desired path.

Return value
Returns TRUE if the directory exists, otherwise FALSE.

SmartCreateOpenFile()

The SmartCreateOpenFile() function is used to create or open afile, and can operate with either
standard or Long Filename paths or filenames.

C syntax
bool PASCAL SmartCreateOpenFile(int iModeFlags, int iAttr, int iAction, char

szFileName[], int *pHandle, int * pActionTaken);
Parameters

iModeFlags
Various flags for the file open mode, as defined in DLLFN.H:

#defi ne OPEN_ACCESS_READONLY 0
#def i ne OPEN_ACCESS WRl TEONLY 1
#def i ne OPEN_ACCESS_READVWR TE 2
#defi ne OPEN_ACCESS RO NOMODLASTACCESS 4
#def i ne OPEN_SHARE_COWPATI BLE 0
#def i ne OPEN_SHARE DENYREADWRI TE 0x10
#def i ne OPEN_SHARE DENYWR TE 0x20
#def i ne OPEN_SHARE_DENYREAD 0x30
#def i ne OPEN_SHARE_DENYNONE 0x40
#define OPEN_FLAGS_NO NHERI T 0x80
#defi ne OPEN_FLAGS_NO BUFFERI NG 0x100
#def i ne OPEN_FLAGS_NO COWPRESS 0x200
#defi ne OPEN_FLAGS_ALI AS H NT 0x400
#defi ne OPEN_FLAGS_NOCRI TERR 0x2000
#defi ne OPEN_FLAGS COW T 0x4000

iAttr
The desired attribute for the resulting file, as defined in DLLFN.H:
#defi ne A NORVAL 0x00

Chapter 3, Programming Reference 43

#define A READONLY 0x01
#defi ne A_H DDEN 0x02
#define A SYSTEM 0x04
#define A VOLUVE 0x08
#define A SUBD R 0x10
#define A ARCH VE 0x20
#define A ALLDIR 0x17
iAction
A flag used to indicate whether a Create, Open or Truncate is desired, as defined in
DLLFN.H:
#defi ne FI LE_CREATE 0x10
#define FI LE_OPEN 1
#defi ne FI LE_TRUNCATE 2
szFileName
The zero terminated filename, which may be a standard Short or Long Filename.
pHandle
The returned file handle which can be used to further access thefile.
pActionTaken

The returned action taken by the function; whether it Opened, Created or Truncated
afile, as defined in DLLFN.H:

#defi ne ACTI ON_OPENED 1

#def i ne ACTI ON_CREATED OPENED 2

#defi ne ACTI ON_REPLACED OPENED 3
Return value

Returns TRUE if the fileis opened or created, otherwise FALSE.

SmartDelete()

The SmartDelete() function deletes one file, and will use the LFNDeleteFiles() function if
possible.

C syntax
bool PASCAL SmartDelete(char * szFileName);

Parameters

szFileName
The zero terminated filename or Long Filename.

Return value
Returns TRUE if the file is deleted, otherwise FALSE.

SmartExpandPath()

The SmartExpandPath() function takes the passed short, long, mixed or relative path, and returns
the short, long, or mixed version of the path. Depending on the flags, it can also expand the true
path of aSUBSTed drive.

44 Chapter 3, Programming Reference

C syntax
bool PASCAL SmartExpandPath(int iLFNExpandFlags, char * szPath, char *
szExpandedPath);

Parameters
iLFNExpandFlags

If the function finds Long Filenames, it will use LFNGetFullPath(). See that
function for adescription of these flags.

szPath

The zero terminated source path, with or without Long Filenames and relative
components.

szExpandedPath
The location to store the zero terminated result of the function.

Return value
Returns TRUE if the operation is a success, otherwise FALSE.

SmartFindAreAllClosed()

The SmartFindAreAllClosed() function checksthe status of the Long Filename find handles, and
returns TRUE if they are all closed and available.

C syntax
bool PASCAL SmartFindAreAllClosed(void)

Parameters
None

Return value
Returns TRUE only if all find handles are currently available, or closed.

SmartFindClose()

The SmartFindClose() function is required to close the handle of aLong FileName find that was
created by SmartFindFirst. Thisis required by most kernel implementations of Long Filenames,
which have alimited number of Find handles.

C syntax
bool PASCAL SmartFindClose(PFIND pFindData);

Parameter
pFindData
A structure which contains the find information returned from SmartFindFirst(). See
DOSTRUCT.H for a complete definition of this structure.
Return value
Returns TRUE if successful, otherwise FALSE.

Chapter 3, Programming Reference 45

SmartFindCloseAll()

The SmartFindCloseAll() function finds and closes all Long Filename handles created by
SmartFindFirst().

C syntax
void PASCAL SmartFindCloseAll(void);

Parameters
None.

Return value
None.

SmartFindFirst()

The SmartFindFirst() function is used to replace the standard C function of findfirst(), and can
operate with either standard or LFN file entries and paths.

C syntax
bool PASCAL SmartFindFirst(int nAttrs, char szPathMask[], PFIND pFindData);

Parameters
nAttrs
The DOS file attributes to match, as defined in DLLFN.H:

#define A NORVAL 0x00
#defi ne A READONLY 0x01
#defi ne A_H DDEN 0x02
#define A SYSTEM 0x04
#define A VOLUME 0x08
#define A SUBDI R 0x10
#defi ne A _ARCH VE 0x20
#define A ALLDIR 0x17

szPathMask

The path in which to find the files. May contain adrive letter and colon, and will
assume current drive otherwise.

pFindData
A structure to contain the found information. See DOSTRUCT.H for a complete
definition of this structure.

Return value
Returns TRUE if any files or directories are found, otherwise FALSE.

46 Chapter 3, Programming Reference

SmartFindNext()

The SmartFindNext() function is the counterpart to the SmartFindFir st() function. It replaces

the standard C function of findnext(), and can operate with either standard or LFN file entries and
paths.

C syntax
bool PASCAL SmartFindNext(PFIND pFindData)

Parameter

pFindData

A structure which contains the find information returned from SmartFindFir st().
See DOSTRUCT .H for acomplete definition of this structure.

Return value
Returns TRUE if another item isfound, otherwise FALSE.

SmartGetCurrentDirectory()

The SmartGetCurrentDirectory() function returns the current pathname on the selected drive.
The Long Filename path will be used if LFNs are supported in the kernel.

C syntax
bool PASCAL SmartGetCurrentDirectory(int nDrive, char szPathName[]);

Parameters
nDrive
The DOS drive parameter (O=the current drive, 1=A:, 2=B:, etc.).
szPathName
A location to store the current pathname. This should be a large enough space for the
maximum path length.
Return value
Returns TRUE if the function is successful, or FAL SE otherwise.

SmartGetDriveFreeSpace()

The SmartGetDriveFreeSpace() function returns the free space on the disk, along with other

values that can be used to translate that value from Clusters to Sectors or Bytes or a percentage of
the total disk space available.

C syntax

bool PASCAL SmartGetDriveFreeSpace(int drive, ulong * pul SectorsPerCluster, ulong
*pul FreeClusters, ulong * pul BytesPerSector, ulong * pul Total Clusters);

Chapter 3, Programming Reference 47

Parameters
drive
The DOS drive parameter (O=the current drive, 1=A:, 2=B:, etc.).

* pul Sector sPer Cluster
A pointer to the unsigned long which will receive the Sectors per Cluster value.

*pulFreeClusters
A pointer to the unsigned long which will receive the Free Clusters value.

* pul BytesPer Sector
A pointer to the unsigned long which will receive the Bytes per Sector value.

*pul Total Clusters

A pointer to the unsigned long which will receive the count of al the clusters on the
drive.

Return value
Returns FAL SE if the function was unable to determine or acces the drive.

SmartGetFileAttributes()

The SmartGetFileAttributes() function returns the attributes of a given file, and can operate with
either standard or Long Filename paths or filenames.

C syntax
bool PASCAL SmartGetFileAttributes(char szName[], unsigned * pAttributes);

Parameters
szName
The zero terminated filename, which may be a standard Short or Long Filename.
pAttributes
The returned attributes of the file, as defined in DLLFN.H:
#define A NORVAL 0x00
#defi ne A READONLY 0x01
#define A H DDEN 0x02
#define A SYSTEM 0x04
#define A VOLUME 0x08
#define A SUBDI R 0x10
#define A ARCH VE 0x20
#define A ALLDIR 0x17

Return value
Returns TRUE if successful, otherwise FALSE.

SmartGetLastAccessDate()

The SmartGetL astAccessDate() function returns the last accessed date from the LFN find
structure. If thisisnot an LFN kernel, it will return the only appropriate date, which is that of file
creation.

48 Chapter 3, Programming Reference

C syntax
unsigned PASCAL SmartGetL astAccessDate(LPFIND IpFindData);

Parameters
IpFindData
A structure which contains the find information returned from Smar tFindFir st().
See DOSTRUCT .H for acomplete definition of this structure.
Return value
Returns an unsigned integer containing the last accessed date.

SmartMakeDirectory()

The SmartM akeDir ector y() function will create the given directory, and can operate with either
standard or Long Filename paths.

C syntax
bool PASCAL SmartMakeDirectory(char szPathName[]);

Parameter
szPathName
The zero terminated argument string for the desired directory path.

Return value
Returns TRUE if the directory was created, otherwise FALSE.

SmartRemoveDirectory()

The SmartRemoveDirectory() function will remove the given directory, and can operate with
either standard or Long Filename paths.

C syntax
bool PASCAL SmartRemoveDirectory(char szPathName[]);

Parameter
szPathName
The zero terminated argument string for the directory path to be removed.

Return value
Returns TRUE if the directory was successfully removed, otherwise FAL SE.

Chapter 3, Programming Reference 49

SmartRenameFileOrDirectory()

The SmartRenameFileOr Dir ector y() function changes the name of afile or directory from the

old value to the new. Thisis an alteration of the directory entry only; the actual contents of thefile
or directory remain unmoved.

C syntax
bool PASCAL SmartRenameFileOrDirectory(char * szOldName, char * szNewName);

Parameters

szOldName
The zero terminated short or Long Filename file entry to rename.

szNewName
The new zero terminated short or Long Filename of the target file.

Return value
Returns TRUE if the file or directory was successfully renamed, otherwise FAL SE.

SmartWildcardDelete()

The SmartWildcar dDelete() function removes any matching short or Long Filenames from the
drive and/or path specified in the szFileName.

C syntax
bool PASCAL SmartWildcardDelete(char * szFileName);

Parameters
szFileName
The zero terminated short or Long Filename, optionally including wildcards.

Return value
Returns TRUE if all matching files are successfully removed, otherwise FALSE.

ZeroQuad()

The ZeroQuad() function sets al four bytes of the passed quad word to zero.
C syntax
void PASCAL ZeroQuad(uquad * pQuad);

Parameter

pQuad
Pointer to a quad word structure.

Return value
none

50 Chapter 3, Programming Reference

TCP/IP Basic API Reference (CAPI)

TCP/IP Basic APl Overview

This chapter describesthe TCP/IPBASIC API also known asthe COMPATIBLE API (CAPI),
which is compatible with awide range of third party TCP/IP applications, and contains
descriptions for each of the supported functions. The function descriptions are preceded by
introductory information that provides some background on the implementation of the
COMPATIBLE API. Thedefinitionsand prototypes for the C environment are supplied in
CAPI.H and COMPILER.H, while the implementation of the C interfaceisin CAPI.C and
_CAPI.C. The COMPATIBLE API provides an interface to the socket, name resolution, ICMP
ping, and kernel facilities provided by the Datalight DOS SOCKETS product.

A socket is an end-point for a connection and is defined by the combination of a host address (also
known as an |P address), a port number (or communicating process|D), and atransport protocol,
such as UDP or TCP.

Two connected SOCKETS using the same transport protocol define aconnection. The APl usesa
socket handle, sometimes referred to as simply a socket. Previously, the socket handle has been
referred to asa network descriptor. The socket handleis required by most function callsin order
to access a connection. Two types of SOCKETS can be used: 1) a DOS compatible socket,
previously referred to as alocal network descriptor, which uses a DOS file handle, and 2) anormal
socket (previously referred to as aglobal network descriptor) which does not use aDOSfile
handle.

New designs should always use normal SOCKETS. A socket handleis obtained by calling the
GetSocket() function. A socket handle can only be used for a single connection. When no longer
reguired, such as when a connection has been closed, the socket handle must be released by calling
ReleaseSocket(). DOS compatible socket handles are in the range 0 to 31, although O to 4 are
normally be used by the C runtime for DOS files like stdin and stdout. Normal socket handles
are positive numbers greater than 63.

Types of Service

SOCKETS can be used with one of two service types:

1. STREAM (using TCP). Refer alsoto “Using SOCK_STREAM and SOCK_DGRAM
Service” on page 81.
2. DATAGRAM (using UDP).

A stream connection provides for the bi-directional, reliable, sequenced, and unduplicated flow of
datawithout record boundaries. No broadcast facilities can be used with a stream connection.

A datagram connection supports bi-directional flow of datathat is not guaranteed to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the order in which it was sent. An
important characteristic of a datagram connection is that record boundaries in data are preserved.
Datagram connections closely model the facilities found in many contemporary packet switched
networks such as Ethernet. Broadcast messages may be sent and received.

Chapter 3, Programming Reference 51

Establishing Remote Connections

To establish a connection, one side (the server) must execute a ListenSocket() and the other side
(the client) aConnectSocket(). A connection consists of the local socket / remote socket pair. It
istherefore possible to have a connection within asingle host aslong as the local and remote port
values differ.

Each host in an IP network must have at |east one host address also known as an | P address.
When a host has more than one physical connection to an I P network, it may have more than one
IP address. An IP address must be unique within a network.

An P addressis 32 bitsin length, aport nunber 16 bits. A value of zero means “any” while a
binary value of all 1Ismeans*“all.” Thelatter value is used for broadcasting purposes.

Using the NET_ADDR structure conveys the addresses (host/port) to be used in a connection.
Thelocal host is not specified; itisimplied. If avalueof 0 is specified for dwRemoteHost, any
remote | P address is accepted; and if avalue of 0 is specified for aremote port, any remote port is
accepted. Thisisnormally the case when a server islistening for anincoming call. If avalue of O
is specified for wLocal Port in the case of aclient calling ConnectSocket(), a unique port number
is assigned by the TCP/IP stack.

Using STREAM and DATAGRAM Services

When using the STREAM service (TCP), bi-directional data can be sent using the WriteSocket()
function and received using the ReadSocket() function until one side performs an Eof Socket()
after which that side cannot send any more data , but can still receive data until the other side
performs an EofSocket(), AbortSocket() or ReleaseSocket().

When using the DATAGRAM service, datagrams can be sent without first establishing a
“connection”. In fact UDP provides a*“ connectionless’ service although the connection paradigm
is used. In addition to ReadSocket () and WriteSocket(), ReadFromSocket() and

WriteT oSocket() can be used. In this case Eof Socket() has no meaning and returns an error.

Blocking and Non-blocking Operations

The default behavior of socket functionsisto block on an operation and only return when the
operation has completed. For example, the ConnectSocket () function only returns after the
connection has been performed or an error is encountered. This behavior applies to most socket
function calls, such asReadSocket() and even WriteSocket(), and especially on STREAM
connections.

In many, if not most applications, this behavior is unacceptable in the single-threaded DOS
environment and must be modified. This modification can be accomplished by either:

1. Specifyingthe NET_FLG_NON_BLOCKING flag on ReadSocket() and WriteSocket()
cals, or

2. Making all operations on a socket non-blocking by calling SetSocketOption() with the
NET_OPT_NON_BLOCKING option.
If anon-blocking operation is performed, the function always returns immediately. If the function
could not complete without blocking, an error is returned withiNetErrNo containing

Chapter 3, Programming Reference

ERR_WOULD_BLOCK. Thiserror should be regarded as arecoverable error and the operation
should beretried, preferably at some later time.

Blocking Operations with Timeouts

A possible alternative to using non-blocking operations is to use blocking operations with
timeouts. Thisis done by calling SetSocketOption() with the NET_OPT_TIMEOUT option, in
which case the function blocks for the specified time, or until completed, whichever occursfirst.
If the specified timeout occurs first, an error is returned withiNetErrNo containing
ERR_TIMEOUT and the operation must be retried. Use non-blocking operations rather than
timeouts, although they may be somewhat more difficult to implement.

Asynchronous Notifications/Callbacks

Asynchronous notifications or callbacks can be used in cases where the polling imp lied by non-
blocking operation is not desirable, when immediate action is required, when a network operation
completes, or when a SOCKETS application runsasa TSR. However, such notifications may be
difficult to use and the programmer must be careful to avoid system crashes resulting from
improper use.

The SetAsyncNotification() function sets functions to be called on specific events, such as
opening and closing of STREAM connections and receiving dataon STREAM and DATAGRAM
connections. The SetAlarm() function is called to set afunction to be called when atimer
expires. Asynchronous notifications are disabled by the DisableAsyncNotification() function and
enabled by the EnableAsyncNotification() function. For more details on the operation and
pitfalls associated with callbacks, refer to the description of SetAsyncNotification().

ResolveName(), GetDCSocket(), ConvertDCSocket(), ReleaseSocket() on a DC socket,
ConnectSocket () with asocket value of —1, and ListenSocket () with a socket value of —1 all call
DOS. For this reason, these functions should not be called from within a callback or an interrupt
serviceroutine.

IP Address Resolution

Two functions are provided for IP address resolution. ParseAddress() converts a dotted decimal
addressto a 32-bit I P address. ResolveName() converts a symbolic host name to a 32-bit |P
address using a host table lookup; if that fails and a domain server is configured, then to aDNS
lookup. ResolveName() calls DOS to perform a host table lookup and always blocks while doing
a DNS lookup.

Obtaining SOCKETS Kernel Information

Y ou can obtain information on the SOCKETS TCP/IP kernel by the GetK ernell nfor mation(),
GetVersion() and GetKernelConfig() functions. Y ou can unload the kernel by ShutDownNet().

Error Reporting

In general, the C functions implementing the compatible API return avalue of -1 if the return type
isint and an error is encountered, in which case, the actual error code is returned in acommon
variable iNetErrNo. In some cases, i SubNetErrNo is also used.

Chapter 3, Programming Reference 53

Any API call may fail with an error code of ERR_API_NOT_LOADED or ERR_RE_ENTRY.

ERR_RE_ENTRY isreturned when the SOCKETS kernel has been interrupted. This condition
can occur only when the APl is called from an interrupt service routine. Programs designed for
thistype of operation, such as TSR programs activated by areal time clock interrupt, should be
coded to handle this error by re-trying the function at alater stage.

Low Level Interface to the Compatible API

Low level functions to access the Compatible API may be used. In this case, the compatible API

is called by setting up the CPU registers and executing a software interrupt. The default interrupt
is 61 hexadecimal, but may be relocated when SOCKETS isloaded. If the actual interrupt is not

known, a search may be performed for it. Refer to the source file CAPI.C for more details.

On entry, AH contains a number specifying the function to perform. On return, the carry flagis
cleared on success and set on failure.

Alternatives to the Compatible API

Additional programming interfaces are available for use with SOCKETS. Thefirstisan earlier
revision of CAPI, now called CAPIOLD. Thisinterfaceis provided to maintain compatibility
with applications developed for SOCKETS 1.0. It is superseded by CAPI, which is better-
documented and easier to use. Both CAPI and CAPIOLD rely on an internal array of socket
descriptors, which must be configured at compile-time. This can use excess memory if your
application rarely uses alarge number of SOCKETS simultaneously. In addition, it isadvised that
these APIs do not deal well with mixing both blocking and non-blocking SOCKETS in one
application.

The second interface is an even more basic API called the Proprietary API. Itisamore natural
kernel interface, which hides fewer details from the programmer. Asaresult, it is more difficult to
work with, and should be used only when its extended features and lowered memory footprint are
required. The documentation isonly provided inside the API.H sourcefile.

The most advanced API isthe TCP/IP SOCKETS API which is an implementation of a subset of
the BSD Sockets API aswell asthe Winsock API. The SOCKETS APl isimplemented as alayer
on top of CAPI and thus uses more memory, but in return it provides awell-known API. Seethe
section “TCP/IP Advanced APl Reference (BSD TCP/IP Sockets)” on page 80 for a complete
description.

Theindustry -standard NETBIOS API is also available.

Porting for Compilers

Compiler specific functions have been written into the compiler.h. Modifications for compilers
other than the supplied Borland BC5.2 compiler and any listed within compiler.h need to happen
within thisfile. Datalight will offer any assistance we can to help with porting to other compilers
but our expertise exists within the supplied Borland compiler.

54

Chapter 3, Programming Reference

Usage Notes

Please refer to the make file provided within the SOCKETS\IEXAMPLES directory for command
line compiler options.

Function Reference

The following sections describe the individual functions of the Compatible API.

AbortDCSockets

The AbortDCSockets function aborts all DOS compatible socket connections.

C syntax
int AbortDCSockets(void);

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH ABORT_DC_SOCKETS (0x24).

Low level return parameters
If carry flag is set, AX = error code.

AbortSocket

The AbortSocket() function aborts the network connection and releases all resources. This
function causes an ungraceful close (reset) on a STREAM connection.

C syntax
int AbortSocket(int iSocket);

Parameter
iSocket
Socket handle for the connection.

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH ABORT_SOCKET (0x19).
BX Socket.

Low level return parameters
If carry flag is set, AX = error code.

Chapter 3, Programming Reference 55

AcceptSocket

The AcceptSocket() function accepts network connections on alisten/accept socket and returns a
normal socket on the new connection. The returned socket must be used to operate on the
connection. If no incoming connection has been received on a blocking socket, AcceptSocket()
will block until aconnection has been received or atime-out occurs. On a non-blocking socket
ERR_WOULD_BLOCK will be returned.

C syntax
int AcceptSocket(int iSocket, int iType, NET_ADDR *psAddr);
Parameter
iSocket
Socket handle for the listen/accept connection.
iType
Type of connection: STREAM.

psAddr
Pointer to NET_ADDR structure.

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH ACCEPT_SOCKET (0x66).

BX Socket.
DX Connection mode: STREAM or DataGram.
DsS Pointer to NET_ADDR address structure.

Low level return parameters
If carry flag clear, initiated OK, AX = Socket.
If carry flag set, AX = error code.

ConnectSocket

The ConnectSocket() function makes a network connection. If iSocket is specified as—1, aDOS
compatible socket isassigned. Inthiscaseonly, DOSis called to open afile handle.

If i Socket specifies anon-blocking socket or i Type specifiesa DATAGRAM connection, this call
returnsimmediately. Inthe case of a STREAM connection, the connection may not yet be
established. ReadSocket() can be used to test for connection establishment. Aslong as
ReadSocket() returnsan ERR_NOT_ESTAB code, the connection is not established. A good
return or an error return with ERR_WOULD_BLOCK indicates an established connection. A
more complex method uses SetAsyncNotify() with NET_AS _OPEN to test for connection
establishment. NET_AS _ERROR should also be set to be notified of afailed open attempt.

56 Chapter 3, Programming Reference

C syntax
int ConnectSocket(int iSocket, int iType, NET_ADDR *psAddr);

Parameter
iSocket
Socket handle for the connection.
iType
Type of connection: STREAM or DATAGRAM.

psAddr
Pointer to NET_ADDR structure.

Return value
Returns socket on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH CONNECT_SOCKET (0x13).

BX Socket.
DX Connection mode: Stream or DataGram.
DsS Pointer to NET_ADDR address structure.

Low level return parameters
If carry flag clear, initiated OK, AX = Socket.
If carry flag set, AX = error code.

ConvertDCSocket

The ConvertDCSocket () function changes a DOS compatible socket handle into a normal socket
handle. Thisfunction calls DOS to close aDOS file handle.

C syntax
int ConvertDCSocket(int iSocket);

Parameter
iSocket
DOS compatible socket handle.

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH CONVERT_DC_SOCKET (0x07).
BX Local socket.

Low level return parameters
AX = Global socket if no error.

Chapter 3, Programming Reference 57

DisableAsyncNotification

The DisableAsyncNatification() function disables Asynchronous notifications (callbacks).
C syntax
int DisableAsyncNatification(void);

Return value
Returns—1 on error with iNetErrNo containing the error. Returns previous state on
success, O for disabled, 1 for enabled.

Low level calling parameter
AH DISABLE_ASYNC_NOTIFICATION (0x11)

Low level return parameter
AX = previous state, 0 = disabled, 1 = enabled

EnableAsyncNotification

The EnableAsyncNatification() function enables asynchronous notifications (callbacks).

C syntax
int EnableAsyncNotification(void);

Return value
Returns—1 on error with iNetErrNo containing the error. Returns previous state on
success, 0 for disabled, 1 for enabled.

Low level calling parameter
AH ENABLE_ASYNC_NOTIFICATION (0x12)

Low level return parameter
AX = previous state, 0 = disabled, 1 = enabled.

EofSocket

The EofSocket () function closes the STREAM (TCP) connection (sends a FIN). After

Eof Socket() has been called, no WriteSocket() calls may be made. The socket remains open for
reading until the peer closes the connection.

C syntax
int Eof Socket (int iSocket);

Parameter
iSocket
Socket handle for the connection.

58 Chapter 3, Programming Reference

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH EOF_SOCKET (0x18)

BX Socket

Low level return parameters
If carry flag is set, AX = error code.

FlushSocket

The FlushSocket() function flushes any output data still queued for a TCP connection. This
defeats the Nagle heuristic and should be used with care.

C syntax
int FlushSocket(int iSocket);

Parameter

iSocket
Socket handle for the connection.

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH FLUSH_SOCKET (0Ox1e)
BX Socket

Low level return parameters
If carry flag set, AX = error code.

GetAddress

The GetAddress() function gets the local 1P address of a connection. In the case of asingle
interface host, thisisthe IP address of the host. In the case of more than one interface, the IP
address of the interface being used to route the traffic for the specific connectionis given.

C syntax
DWORD GetAddress (int iSocket);

Parameter
iSocket
Socket handle for the connection.

Chapter 3, Programming Reference 59

Return value

Returns | P address on success. Returns OL on error withiNetErrNo containing
theerror.

Low level calling parameters
AH GET_ADDRESS (0x05)
BX Socket

Low level return parameters
AX:DX = IP address of thishost. AX:DX = 0:0 on error.

GetBusyFlag

The GetBusyFlag function returns the busy status of SOCKETS. GetBusyFlag iscallableat a
low level only; thereisno high-level function.

Low level calling parameters
AX GET_BUSY_FLAG

Low level return parameters
ESS Pointer to the busy flag byte.
Examine only the four low-order bits. A non-zero value indicates that SOCKETSis

currently busy. A value greater than 1 indicate that SOCKETS is not only busy, but isre-
entered.

GetDCSocket

The GetDCSocket() function gets a DOS-compatible socket handle. Thisfunction calls DOS to
open aDOSfile handle.

C syntax
int GetDCSocket(void);

Return value

Returns socket handle on success, -1 on failure with iNetErrNo containing the error
code.

Low level calling parameters
AH GET_DC_SOCKET (0x22).

Low level return parameters
If carry flag is clear, AX = Socket.
If carry flag is set, AX = error code.

60 Chapter 3, Programming Reference

GetKernelConfig

The GetK ernel Config() function gets the kernel configuration.

C syntax
int GetKernelConfig (KERNEL_CONFIG *psKo);

Parameter
psKc
Pointer to KERNEL CONFIG structure.
bKMaxTcp Number of TCP sockets allowed.
BKMaxUdp Number of UDP sockets allowed.
bKMaxIp Number of 1P sockets allowed (0).
bKMaxRaw Number of RAW_NET sockets allowed (0).
bKActTcp Number of TCP socketsin use.
bKActUdp Number of UDP socketsin use.
bKActlp Number of IP socketsin use (0).
bK ActRaw Number of RAW_NET socketsin use (0).
wWKACctDCS Number of active Dos Compatible Sockets.
wKACctSoc Number of active normal Sockets.
bKMaxLnh Maximum header on an attached network.
bKM axLnt Maximum trailer on an attached network.
bKLBUF_SIZE Size of alarge packet buffer.
bKNnet Number of network interfaces attached.
dwK Cticks Milliseconds since kernel started.
dwK Broadcast IP broadcast addressin use.

Return value

Returns 0 on success with KERNEL _CONFIG structurefilledin, -1 on failure with
iNetErrNo containing the error code.

Low level calling parameters
AH GET_KERNEL_CONFIG (0x2A).

DSS pointer to kernel_conf structure.

Return
KERNEL_CONF structure filled in.

GetKernellnformation

The GetK er nell nfor mation() function gets specified information from the kernel.

C syntax

int GetK ernellnformation (int iSocket,BY TE bCode,BY TE bDevID,void
*pData, WORD *pwSize);

Chapter 3, Programming Reference 61

Options
iSocket
Socket handle for K_INF_TCP_CB; otherwise ignored..

bCode
Code specifying kernel info to retrieve:

K_INF_HOST_TABLE Gets name of file containing host table.
K_INF_DNS SERVERS Gets|P addresses of DNS Servers.

K_INF_TCP_CONS Gets number of Sockets (DC + normal).

K_INF_BCAST_ADDR Gets broadcast |P address.

K_INF_IP_ADDR Gets | P address of first interface.

K_INF_SUBNET_MASK Gets netmask of first interface.

K_INF_TCP_CB Gets TCB of STREAM socket (defined in API.H)
pData

Pointer to data areato receive kernel information.
puSize
Pointer to WORD containing length of data area.

Return values

On success returns 0 with data area and size word filled in. Returns—1 with
iNetErrNo containing the error on failure.

Low level calling parameters

AH GET_KERNEL_INFO (0x02)
DsS Pointer to data area to receive kernel information.
ES.DI Pointer to WORD containing length of data area.
DH Code specifying kernel info to retrieve.
K_INF_HOST_TABLE Gets name of file containing host table.
K_INF_DNS SERVERS Gets | P addresses of DNS Servers.
K_INF_TCP_CONS Gets number of Sockets (DC + normal).
K_INF_BCAST_ADDR Gets broadcast | P address.
K_INF_IP_ADDR Gets | P address of first interface.
K_INF_SUBNET_MASK Gets netmask of first interface.
K_INF_TCP_CB Gets TCB of STREAM socket (defined in API.H)

Low level return parameters
If no error, data areaisfilled in as well as the size word.

GetNetInfo

The GetNetInfo() function gets information about the network.

62 Chapter 3, Programming Reference

C syntax
int GetNetInfo(int iSocket, NET_INFO *psNI);

Parameter

iSocket
Socket handle for the connection.

psNI

Pointer to NET_INFO structure. The following members of NET_INFO are
obtained:

DwlpAddress
dwlpSubnet
iUp

iLanLen
pLanAddr

Return value
Returns 0 with NET_INFO structure filled in on success, -1 on failure with iNetErrNo
containing the error code.
Low level calling parameters
AH GET_NET_INFO (0x06).
DsS Pointer to netinfo structure.

Low-level return
netinfo structurefilled in.

GetPeerAddress

The GetPeer Address() function gets peer address information on a connected socket.

C syntax
int GetPeer Address(int iSocket, NET_ADDR *pAddr);
Options
iSocket
Socket handle for the connection.

pAddr
Pointer to NET_ADDR structure to receive information.

Return values

Returns 0 and NET_ADDR structure filled in on success. Returns—1 with
iNetErrNo containing the error on failure.

Low level calling parameters
AH GET_PEER_ADDRESS (0x16).

BX Socket.
DS.DX Pointer to NET_ADDR address structure.

Chapter 3, Programming Reference 63

Low level return parameters
If carry flag is clear, the address structureisfilled in
If carry flag is set, AX = error code

GetSocket

The GetSocket() function gets a socket handle.

C syntax
int GetSocket(void);

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error
code.

Low level calling parameters
AH GET_SOCKET (0x29).

Low level return parameters
If carry flag is clear, AX = Socket.

If carry flag is set, AX = error code.

GetVersion

The GetVersion() function gets version number of the Compatible API.

C syntax
int GetVersion(void);

Return value
Returns 0x214 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH GET_NET_VERSION (OxOF).

Low level return parameters
AX =0x214

ICMPPing

The ICMPPing() function sends an ICMP ping (echo request) and waits until aresponseis
received or for six secondsif no responseisreceived. 1CMPPing() isaways ablocking function.

C syntax
int |ICMPPing(DWORD dwHost, int iLength);

64 Chapter 3, Programming Reference

Options
dwHost
IP address of host to ping.
iLength
Number of data bytesin ping request.

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH ICMP_PING (0x30).
CX number of data bytesin ping request.
DX:BX IP address of host to ping.

Low level return parameters
If carry flag is set, AX = error code.

IfacelOCTL

The Ifacel OCTL () function controls asynchronous interfaces

C-Syntax
Int Ifacel OCTL(char * pszName, WORD wFunction);
Parameters
pszName
Pointer to interface name.
wunction
Function to perform:
IOCTL_CONNECT Start dial operation
IOCTL_DISCONNECT Disconnect modem
IOCTL_ENABLEPORT Enable communications port
IOCTL_DISABLEPORT Disable communications port
IOCTL_ENABLEDOD Enable dial-on-demand
IOCTL_DISABLEDOD Disable dial-on-demand
IOCTL_GETSTATUS Get modem/connection status

Return Value
Returns—1 on error, >= 0 if OK.

IOCTL_GETSTATUS returns the following bits:

#define ST_DIR 0x01 /* Mbdem Data Term nal Ready */
#define ST_RTS 0x02 /* Request To Send */

#define ST_CTS 0x04 /* Oear To Send */

#define ST_DSR 0x08 /* Data Set Ready */

#define ST_R 0x10 /* Ring Indicator */

#defi ne ST_DCD 0x20 /* Data Carrier Detect */

#defi ne ST_CONNECTED 0x40 /* Mbdemis connected */

#def i ne ST_MCODEMSTATE 0x700 /* Modem state mask */

#defi ne STM_NONE 0x000 /* No modem on port */

Chapter 3, Programming Reference

65

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#defi ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

STM | DLE

STM I NI TI ALI ZI NG
STM DI ALI NG
STM_CONNECTI NG
STM_ANSVER! NG
STPPPP_I N
STPPP_STATE
STPPP_DEAD
STPPP_LCP
STPPP_AP
STPPP_READY
STPPP_TERM NATI NG

0x100 /*
0x200 /*
0x300 /*
0x400 /*
0x500 /*
0x800 /*
0x7000 /*
0x0000 /*
0x1000 /*
0x2000 /*
0x3000 /*
0x4000 /*

Mdemis idle */

Mbdemis initializing */
Modem i s dialing */

Modem i s connecting */
Modem i s answering */

PPP incom ng call */

PPP state */

PPP dead */

PPP LCP state */

PPP Aut hentication state */
PPP Ready (IPCP state) */
PPP Term nating */

IsSocket

The IsSocket () function checks a DOS compatible socket for validity.

C syntax

int 1sSocket(int iSocket);

Parameter
iSocket

DOS Compatible socket handle for the connection.

Return value

Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH IS_SOCKET (0x0D).

BX Local socket.

Low level return parameters
Carry flag clear if valid.

Carry flag set if not valid, AX = error code.

JoinGroup

The JoinGroup() function causes SOCKETS to join amulticast group.

C syntax

int JoinGroup(DWORD dwGroupAddress, DWORD dwIPAddress);

Options

dwGroupAddress

The group address on which to receive multicast datagrams.
dwlPAddress

The IP address for the interface to use. The first interface to be specified in
SOCKET.CFG isthe default interface in the case where dwlPAddress == 0.

66 Chapter 3, Programming Reference

Return value
Returns 0 on success, any other integer value contains the error code.

Low level calling parameters
AH JOIN_GROUP (0x60)

DsS Pointer to GROUP_ADDR structure, documented in CAPI.H

Low level return parameters
If carry flag is set, AX = error code

LeaveGroup

The LeaveGroup() function causes SOCKETSto |eave a multicast group.

C syntax
int LeaveGroup(DWORD dwGroupAddress, DWORD dwlPAddress);

Options
dwGroupAddress
The group address on which multicast datagrams are being received.

dwlPAddress

The |P address for theinterface being used. The first interface to be specified in
SOCKET.CFG isthe default interface in the case where dwlPAddress == 0.

Return value
Returns 0 on success, any other integer value contains the error code.

Low level calling parameters
AH LEAVE_GROUP (0x61)

DsS Pointer to GROUP_ADDR structure, documented in CAPI.H

Low level return parameters
If carry flag is set, AX = error code

ListenAcceptSocket

The ListenAcceptSocket() function listens for network connections. If i Socket is specified as-1, a
Dos Compatible socket is assigned. In this case only, DOS s called to open afile handle. This call
returnsimmediately. If iType specifiesaDATAGRAM connection, this call acts exactly the same
as aListenSocket(). If iType specifiesa STREAM connection, AcceptSocket() must be used to
accept incoming connections oniSocket, which will remain listening for new connections. Up to

i Connectionsincoming connections may be eceived before an AcceptSocket() must be issued to
prevent further connections to be refused.

C syntax
int ListenAcceptSocket(int iSocket, int iType, int iConnections, NET_ADDR *psAddr)

Chapter 3, Programming Reference 67

Parameter
iSocket
Socket handle for the connection.
iType
Type of connection: STREAM or DATAGRAM.
iConnections
Number of connections to be queued pending AcceptSocket().

psAddr
Pointer to NET_ADDR structure.

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH LISTEN_ACCEPT_SOCKET (0x65).

BX Socket.

CX Number of connections.

DX Connection mode: STREAM or DataGram.

DsS Pointer to NET_ADDR address structure.

Low level return parameters
If carry flag clear, initiated OK.
If carry flag set, AX = error code.

ListenSocket

The ListenSocket() function listens for anetwork connection. If iSocket is specified as—1, aDOS
compatible socket is assigned. In this case only, DOS s called to open afile handle.

If i Socket specifies a non-blocking socket or i Type specifiesa DATAGRAM connection, this call
returnsimmediately. Inthe case of a STREAM connection, the connection may not be established
yet. ReadSocket() can be used to test for connection establishment.

Aslong asReadSocket() returns an ERR_NOT_ESTAB code, the connection is not established.
A good return or an error return with ERR_WOULD_BL OCK indicates connection establishment.
A more complex method is to use SetAsyncNotify() with NET_AS_OPEN to test for connection
establishment. NET_AS ERROR should also be set to be notified of afailed open attempt.

C syntax
int ListenSocket(int iSocket, int iType, NET_ADDR *psAddr);

Parameter
iSocket
Socket handle for the connection.
iType
Type of connection: STREAM or DataGram.

68 Chapter 3, Programming Reference

psAddr
Pointer to NET_ADDR structure.

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error
code.

Low level calling parameters
AH LISTEN_SOCKET (0x23).

BX Socket.
DX Connection mode: STREAM or DataGram.
DSS Pointer to NET_ADDR address structure.

Low level return parameters
If carry flag clear, initiated OK, AX = Socket.
If carry flag set, AX = error code.

ParseAddress

The Par seAddress() function gets an | P address from dotted decimal addresses.

C syntax
DWORD Par seAddr ess(char * pszName);

Parameter
pszName
Pointer to string containing dotted decimal address.

Return value
Returns | P address on success, 0 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH PARSE_ADDRESS (0x50).
DS.DX Pointer to dotted decimal string.

Low level return parameters
AX:DX = |P address.

ReadFromSocket

The ReadFromSocket() function readsfrom the network using a socket and is only intended to
be used on DataGram sockets. All datagrams from the | P address and port matching the valuesin
the NET_ADDR structure are returned while others are discarded. A zero value for dwRemoteHost
is used asawildcard to receive from any host and a zero value for wRemotePort is used as a
wildcard to receive from any port. The local port, wLocal Port , can not be specified as zero.

In other respects ReadFromSocket () behaves the same as Read Socket().

Chapter 3, Programming Reference 69

C syntax

int ReadFromSocket(int i Socket, char * pcBuf, WORD wLen, NET_ADDR * psFrom,
WORD wFlags);

Options
iSocket
Socket for the connection.

pcBuf
Pointer to buffer to receive data.

wlLen
Length of buffer, i.e. maximum number of bytesto read.

psFrom

Pointer to NET_ADDR structure to receive address information about local and
remote ports and remote | P address.

wklags
Flags governing operation. Any combination of:
NET_FLG_PEEK Don't dequeue data.
NET_FLG_NON_BLOCKING Don't block.

Return value

Returns number of bytes read on success, -1 on failure with iNetErrNo containing the
error code. A return code of O indicates that the peer has closed the connection. Note the
following anomaly:

If blocking is disabled, afailure with an error code of ErrWouldBlock is completely
normal and only means that no dataiis currently available.

Low level calling parameters
AH READ_FROM_SOCKET (0x1d).

BX Socket.

CX Maximum number of bytesto read.

DX Flags- any combination of.
NET_FLG_PEEK Don't dequeue data.
NET_FLG_NON_BLOCKING Don't block.

DsS Pointer to buffer to read into.

ES.DI Pointer to NET_ADDR address structure.

Low level return parameters
If carry flagis clear, AX = CX = number of bytesread.

If carry flag is set, AX = error code.

ReadSocket

The ReadSocket() function reads from the network using a socket. ReadSocket() returns as soon
as any non-zero amount of datais available, regardless of the blocking state. If the operationis

70

Chapter 3, Programming Reference

non-blocking, either by having used Set Sock eOption() with the NET_OPT_NON_BLOCKING
option or specifyingwFlagswith NET_FLG_NON_BLOCKING, ReadSocket() returns
immediately with the count of available data or an error of ERR_WOULD_BLOCK.

With a STREAM (TCP) socket, record boundaries do not exist and any amount of data can be
read at any time regardless of the way it was sent by the peer. No dataistruncated or lost even if
more data than the buffer sizeis available. What is not returned on one call, is returned on
subsequent calls. If aNULL buffer is specified or both the NET_FLG_PEEK and
NET_FLG_NON_BLOCKING flags are specified, the number of bytes on the receive queueis
returned.

In the case of a DataGram (UDP) socket, the entire datagram is returned in one call, unless the
buffer istoo small in which case the data is truncated, thereby preserving record boundaries.
Truncated dataislost. If datais available and both the NET_FLG_PEEK and
NET_FLG_NON_BLOCKING flags are specified, the number of datagrams on the receive queue
isreturned. If dataisavailableand NET_FLG_PEEK isset and aNULL buffer is specified, the
number of bytesin the next datagram is returned.

C syntax

int ReadSocket(int iSocket, char * pcBuf, WORD wLen, NET_ADDR *psFrom, WORD
wHags);

Options
iSocket
Socket handle for the connection.

pcBuf
Pointer to buffer to receive data.

wlLen
Length of buffer, i.e. maximum number of bytesto read.

psFrom

Pointer to NET_ADDR structure to receive address information about local and
remote ports and remote | P address.

wklags
Flags governing operation. Any combination of:
NET_FLG_PEEK Don't dequeue data.
NET_FLG_NON_BLOCKING Don't block.

Return value

Returns number of bytes read on success, -1 on failure with iNetErrNo containing the
error code. A return code of O indicates that the peer has closed the connection.

Note: If blocking is disabled, afailure with an error code of ERR_WOULD_BLOCK is
completely normal and only means that no dataiis currently available.

Low level calling parameters
AH READ_SOCKET (0x1b).

BX Socket.

Chapter 3, Programming Reference 71

CX Maximum number of bytesto read.

DX Hags- any combination of.
NET_FLG_PEEK: Don't dequeue data.
NET_FLG_NON_BLOCKING: Don't block.

DsS Pointer to buffer to read into.

ES.DI Pointer to NET_ADDR address structure.

Low level return parameters
If carry flag is clear, AX = CX = number of bytes read.

If carry flag is set, AX = error code.

ReleaseDCSockets

The ReleaseDCSockets function closes all connections and rel eases all resources associated with
DOS compatibl e sockets.

C syntax
int ReleaseDCSockets(void);

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

C syntax
int ReleaseDCSockets(void);

Low level calling parameters
AH RELEASE_DC_SOCKETS (0x09).

Low level return parameters
AX = error codeif carry flag is set.

ReleaseSocket

The ReleaseSocket() function closes the connection and releases all resources. On a STREAM
(TCP) connection, thisfunction should only be called after the connection has been closed from
both sides otherwise areset (ungraceful close) can result.

C syntax
int ReleaseSocket(int iSocket);

Parameter
iSocket
Socket handle for the connection.

72 Chapter 3, Programming Reference

Return value
Returns socket handle on success, -1 on failure with iNetErrNo containing the error
code.
Low level calling parameters
AH RELEASE_SOCKET (0x08).
BX Socket.

Low level return parameters
AX = error codeif carry flag is set

ResolveName

The ResolveName() function resolves | P address from symbolic name.

C syntax
DWORD ResolveName(char * pszName, char * pcCname, int iCnameL en);
Options
pszName
Pointer to string containing symbolic name.
pcCname
Pointer to buffer to receive canonical name.

ICnameLen
Length of buffer pointed to by pcName.

Return value

Returns | P address on success, 0 on failure with iNetErrNo containing the error code.
Low level calling parameters

AH RESOLVE_NAME (0x54).

CX Size of buffer to receive canonical name.

DS.DX Pointer to string containing symbolic name.

ES.DI Pointer to buffer to receive canonical name.
Low level return parameters

If carry flag is clear, AX:DX = |P address.

If carry flag is set, AX = error code.

SelectSocket

The SelectSocket() function tests all DOS compatible sockets for data avail ability and readinessto
write. A 32-bit DWORD representing 32 DC socketsisfilled in for each socket with receive data,
and another 32-bit DWORD for DC sockets ready for writing. The least-significant bit represents

Chapter 3, Programming Reference

the socket with value 0 and the most-significant bit represents the socket with value 31. Bits
representing unused sockets are |eft unchanged.

C syntax
int SelectSocket(int iMaxid, long *pliflags, long * plOflags);
Options
iMaxid
Number of socketsto test.
pliflags
Pointer to input flags indicating receive data availability.
plOflags
Pointer to output flags indicating readiness to write.
Return value
Returns 0 on success with * pllflags and * plOflags filled in with current status, -1 on
failure with iNetErrNo containing the error code.

Low level calling parameters
AH SELECT_SOCKET (0x0e).

BX Number of socketsto test.
DS.DX Pointer to DWORD for data availability.
ES.DI Pointer to DWORD for readiness towrite.

Low level return parameters
Both DWORDSs updated with current status.

SetAlarm

The SetAlarm() function sets an alarm timer.

C syntax
int SetAlarm(int iSocket, DWORD dwTime, int (far *IpHandler)(), DWORD dwHint);

Options
iSocket
Socket handle for the connection.

dwTime
Timer delay in milliseconds.

IpHandler
Far address of alarm callback. Seethe description of SetAsyncNotification() for
the format of the callback function.

dwHint
Argument to be passed to callback function.

74

Chapter 3, Programming Reference

Return value

Returns socket handle on success, -1 on failure with iNetErrNo containing the error
code.

Low level calling parameters
AH SET_ALARM (0x2bB.

BX Socket.

CX:DX Timer delay in milliseconds.
DSS Address of alarm callback.

ES.DI Argument to be passed to callback.

Low level return parameters
If carry flag is set, AX = error code

Seethe description of SET_ASYNC_NOTIFICATION for the callback function.

SetAsyncNotification

The SetAsyncNotification() function sets an asynchronous notification (callback) for a specific

event.
C syntax
int far * SetAsyncNotification(int iSocket, int iEvent, int (far *IpHandler)(),DWORD
dwHint);
Parameter
iSocket
Socket handlefor the connection.
iEvent
Event which is being set:
NET_AS OPEN Connection has opened.
NET_AS RCV Data has been received.
NET_AS XMT Ready to transmit.
NET_AS FCLOSE Peer has closed connection.
NET_AS CLOSE Connection has been closed.
NET_AS ERROR Connection has been reset.
IpHandler
Far address of callback function.
dwHint

Argument to be passed to callback function

The handler is not compatible with C calling conventions but is called by afar call with
the following parameters:

BX = Socket handle.
CX = Event.

Chapter 3, Programming Reference 75

ES:DI = dwHint argument passed to SetAsyncNotification() or SetAlarm().
DS:DX = SI:DX = variable argument depending on event:

NET_AS OPEN
NET_AS CLOSE Pointer to NET_ADDR address structure.

NET_AS FCLOSE

NET_AS RCV

NET_AS ALARM Zero.

NET_AS XMT Byte count which can be sent without blocking.

NET_AS ERROR Error code—ERR_TERMINATING, ERR_TIME_OUT or

ERR_RESET.

Other CAPI functions may be called in the callback, with the exception of
ResolveName() which may call DOS. The callback is not compatible with C argument-
passing conventions and some care must be taken. Some CPU register manipulation is
required. This can be done by referencing CPU registers, such as_BX, or by means of
assembler instructions.

In the callback, the stack is supplied by SOCKET S and may be quite small depending on
the /s= command line option when loading SOCKETS. The stack segment is obviously
not equal to the data segment, which can cause problems when the Tiny, Small or
Medium memory model isused. The simplest way to overcome the problem isto use the
Compact, Large or Huge memory model. Other options - use the DS != SS compiler
option or do a stack switch to a data segment stack .

If the callback iswritten in C or C++, the _|loads modifier can be used to set the data
segment to that of the module, which destroys the DS used for the variable argument.
(Thisiswhy DS == S| on entry for SOCKETS version 1.04 and later.) An aternate
method is to use the argument passed to SetAsyncNotification() in ES:DI as apointer to a
structure that is accessible from both the main code and the callback. If DSisnot set to
the data segment of the module, then the functionsin CAPI.C do not work: Don't use
them in the callback.

The callback will probably be performed at interrupt time with no guarantee of reentry to
DOS. Do not use any function, such as putchar() or printf(), in the callback which may
cause DOS to be called.

It is good programming practice to do as little as possible in the callback. The setting of
event flags that trigger an operation at a more stable time is recommended.

Callback functions do not nest. The callback function is not called while a callback is
still in progress, even if other CAPI functions are called.

To alleviate the problemsin items 2, 3 and 4 above, a handler is provided in CAPI.C that
uses the dwHint parameter to pass the address of a C-compatible handler, with a stack
that is also C-compatible. This handler is named AsyncNotificationHandler. A user
handler named MyHandler below, is called in the normal way with a stack of 500 bytes
long. Changing the HANDLER_STACK_SIZE constant in CAPI.C can set the stack size
value.

int far MyHandler (int i Socket, int iEvent, DWORD dwArg);
SetAsyncNotification(iSocket, iEvent, AsyncNoatificationHandler,
(DWORD)MyHandler);

Return value

Returns pointer to the previous callback handler on success, -1 on failure with iNetErrNo
containing the error code.

76 Chapter 3, Programming Reference

Low level calling parameters
AH SET_ASYNC_NOTIFICATION (0x1F).

BX Socket.

CX Event:
NET_AS _OPEN Connection has opened.
NET_AS RCV Data has been received.

NET_AS XMT Ready to transmit.
NET_AS FCLOSE Peer has closed connection.
NET_AS CLOSE Connection has been closed.
NET_AS ERROR Connection has been reset.
DS.DX Address of handler.
ES:DI Argument passed to handler.

Low level return parameters

If carry flag is set, AX = error code, else address of previous handler isreturned in
ES:DX.

SetSocketOption

The SetSocketOption() function sets an option on the socket.

C syntax
int SetSocketOption(int iSocket, int iLevel, int iOption, DWORD dwOptionValue, int
iLen);
Options
iSocket
Socket handle for the connection.
iLevel
Level of option. Thisvalueisignored.
iOption
Option to set.
NET_OPT_NON_BLOCKING Set blocking off if dwOptionValue is non-zero.
NET_OPT_TIMEOUT Set the timeout to dwOptionValue milliseconds.
Turn off timeout if dwOptionValueis zero.
NET_OPT_WAIT_FLUSH Wait for flush if dwOptionVaue is non-zero.
dwOptionValue
Option value.
iLen

Length of dwOptionValue, 4 in all cases.

Return value
Returns global socket on success, -1 on failure with iNetErrNo containing the error code.

Chapter 3, Programming Reference 77

Low level calling parameters
AH SET_OPTION (0x20).

BX Socket.
DS.DX Value of option.
DI Option:
NET_OPT_NON_BLOCKING Set blocking off if dwOptionValue is non-zero.
NET_OPT_TIMEOUT Set the timeout to dwOptionV alue milliseconds.
Turn off timeout if dwOptionValueis zero.
NET_OPT_WAIT_FLUSH Wait for flush if dwOptionValue is non-zero.

Low level return parameters
If carry flag is set, AX = error code.

ShutDownNet

The ShutDownNet() function shuts down the network and unloads the SOCKETS TCP/IP kernel.

C syntax
int ShutDownNet(void);

Return value
Returns 0 on success, -1 on failure with iNetErrNo containing the error code.

Low level calling parameters
AH SHUT_DOWN_NET (0x10).

Low level return parameters
None.

WriteSocket

The WriteSocket() function writes to the network using a socket.

C syntax
int WriteSocket(int i Socket, char * pcBuf, WORD wLen, WORD wFlags);

Parameter
iSocket
Socket handle for the connection.
pcBuf
Pointer to buffer to containing send data.
wlLen
Length of buffer, i.e. number of bytesto write.

wFlags
Flags governing operation; can be any combination of:

78 Chapter 3, Programming Reference

NET_FLG_OOB Send out of band data (TCP only).

NET_FLG_PUSH Send dataeven if NET_OPT_WAIT_FLUSH is set. Does not
override Nagle heuristic (TCP only).

NET_FLG_NON_BLOCKING Don't block.

NET_FLG_BROADCAST Broadcast data(UDP only).
NET_FLG_MC_NOECHO Suppresstheloca echo of a multicast datagram.

Return value

Returns number of bytes written on success, -1 on failure with iNetErrNo containing the
error code. The number of bytes actually written on a non-blocking write, can be less
than wLen. In such a case, the writing of the unwritten bytes must be retried, preferably
after some delay.

Low level calling parameters
AH WRITE_SOCKET (0x1a).
BX Socket.
CX Bytecount.
DX Hags- any combination of the following:

NET_FLG_OOB Send out of band data (TCP only).
NET_FLG_PUSH Disregard Nagle heuristic (TCP only).
NET_FLG_NON_BLOCKING Don't block.
NET_FLG_BROADCAST Broadcast data (UDP only).

DsS Pointer to buffer to write.

Low level return parameters
If carry flag is clear, AX = number of bytes sent.
If carry flag is set, AX = error code.

WriteToSocket

The WriteT oSocket() function writes to the network using a network address (UDP only).

C syntax
int WriteT oSocket(int iSocket, char * pcBuf, WORD wLen, NET_ADDR *psTo,
WORD wFlags);
Options
iSocket
Socket handle for the connection.
pcBuf
Pointer to buffer containing send data.

wLen
Length of buffer, i.e. number of bytesto write.

Chapter 3, Programming Reference 79

psTo

Pointer to NET_ADDR structure containing local port to write from and remote port
and |P address to write to.

wklags
Flags governing operation. Any combination of:
NET_FLG_NON_BLOCKING Don't block.
NET_FLG_BROADCAST Broadcast data (UDP only).

Return value

Returns number of bytes written on success, -1 on failure with iNetErrNo containing the

error code.

Low level calling parameters

AH WRITE_TO_SOCKET (0x1C).

BX Socket.
CX Bytecount.
DX Hags:
NET_FLG_NON_BLOCKING Don't block
NET_FLG_BROADCAST Broadcast data (UDP only).
DsS Pointer to buffer towrite.
ES.DI Pointer to NET_ADDR address structure.

Low level return parameters

If carry flag is clear, AX = number of bytes sent.

If carry flag is set, AX = error code.

Error Codes

Error Vaue Error Code Meaning

NO_ERR 0 No error

ERR_IN_USE 1 A connection aready exists
ERR_DOS 2 A DOS error occurred

ERR_NO _MEM 3 No memory to perform function
ERR_NOT_NET_CON 4 Connection does not exist
ERR_ILLEGAL_OP 5 Protocol or mode not supported
ERR_NO_HOST 7 No host address specified
ERR_TIMEOUT 13 The function timed out
ERR_HOST_UNKNOWN 14 Unknown host has been specified
ERR BAD ARG 18 Bad arguments

ERR_EOF 19 The connection has been closed by peer
ERR_RESET 20 The connection has been reset by peer
ERR_WOULD_BLOCK 21 Operation would block
ERR_UNBOUND 22 The descriptor has not been assigned

80 Chapter 3, Programming Reference

ERR_NO_SOCKET 23 No socket is available

ERR BAD_SYS CALL 24 Bad parameter in call
ERR_NOT_ESTAB 26 The connection has not been established
ERR_RE_ENTRY 27 The kernel isin use, try again later
ERR_TERMINATING 29 Kernel unloading
ERR_API_NOT_LOADED 50 SOCKETS kernel is not loaded

TCP/IP Advanced API Reference (BSD TCP/IP Sockets)

TCP/IP SOCKETS API Overview

This chapter describes the SOCKETS API, which is compatible with the BSD Sockets API and
also the Winsock API. The definitions and prototypes for the C environment are supplied in
SOCKET.H, while the implementation of the C interface isin SOCKET .C. The SOCKETS API is
implemented as a layer on top of the Compatible API (CAPI) and provides an interface to the
socket and name resolution facilities provided by the Datalight DOS SOCKETS product. It also
provides the database functions of BSD Sockets and Winsock.

A socket is an end-point for a connection and is defined by the combination of a host address (also
known as an I P address), a port number (or communicating process I D), and atransport protocol,
such as UDP or TCP.

Two connected SOCKETS using the same transport protocol define a connection. The APl usesa
socket handle, sometimes referred to as simply asocket. The socket handleis required by most
function callsin order to access a connection. The socket handle used is the same as anormal
socket as used in CAPI.

A socket handle is obtained by calling the socket() function. A socket handle can only be used for
asingle connection. When no longer required, such as when a connection has been closed, the
socket handle must be released by calling closesocket(). Socket handles are positive numbers
greater than 63.

Types of Service

SOCKETS can be used with one of two service types:
SOCK_STREAM (using TCP).
SOCK_DGRAM (using UDP).

A stream connection provides for the bi-directional, reliable, sequenced, and unduplicated flow of
datawithout record boundaries. No broadcast facilities can be used with a stream connection.

A datagram connection supports bi-directional flow of datathat is not guaranteed to be sequenced,
reliable, or unduplicated. That is, a process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the order in which it was sent. An
important characteristic of adatagram connection isthat record boundariesin data are preserved.
Datagram connections closely model the facilities found in many contemporary packet switched
networks such as Ethernet. Broadcast messages may be sent and received.

Chapter 3, Programming Reference 81

Establishing Remote Connections

To establish a connection, one side (the server) must execute alisten() and and subsequent
accept() and the other side (the client) aconnect(). A connection consists of the local socket /
remote socket pair. It istherefore possibleto have a connection within asingle host aslong as the
local and remote port values differ.

Each host in an I P network must have at least one host address also known as an | P address.
When a host has more than one physical connection to an IP network, it may have more than one
IP address. An IP address must be unique within a network.

An P addressis 32 bitsin length, a port number 16 bits. A value of zero means “any” while a
binary value of all 1smeans“all.” The latter value is used for broadcasting purposes.

Using the sockaddr structure conveys the addresses (host/port) to be used in a connection. A local
association is performed by the bind() function.

Using SOCK STREAM and SOCK DGRAM Services

When using the SOCK_STREAM service (TCP), bi-directional data can be sent using the send()
or sendto() functions and received using the recv() or recvfrom() functions until one side
performs ashutdown(1) or shutdown(2) after which that side cannot send any more data, but can
still receive data until the other side performs a shutdown(1), shutdown(2) or closesocket().

When using the SOCK_DGRAM service, datagrams can be sent without first establishing a

“connection”. In fact UDP provides a*“ connectionless’ service although the connection paradigm
isused.

Blocking and Non-blocking Operations

The default behavior of socket functionsisto block on an operation and only return when the
operation has completed. For example, the connect() function only returns after the connection
has been performed or an error is encountered. This behavior appliesto most socket function
calls, such asrecv() and even send(), and especially on SOCK_STREAM connections.

In many, if not most applications, this behavior is unacceptable in the single-threaded DOS
environment and must be modified. This modification can be accomplished by making all
operations on a socket non-blocking by callingioctlsocket() with the FIONBIO option.

If anon-blocking operation is performed, the function always returns immediately. If the function
could not complete without blocking, an error is returned with errno containing
EWOULDBLOCK. Thiserror should be regarded as arecoverable error and the operation should
beretried, preferably at some later time.

Qut of band data

TCP “out of band” or urgent datais not implemented. Setting the MSG_OOB flag has no effect in
recv(), recvfrom(), send() or sendto(); it will simply be ignored. The SO_OOBINLINE option

Chapter 3, Programming Reference

will also be ignored andioctlsocket() with the SSIOCATMARK command, will always return an
argument value of 1.

Error Reporting

In general, the C functionsimplementing the SOCKETS API return avalue of SOCKET_ERROR
if thereturn typeisint and an error is encountered, in which case, the actual error codeis returned
inacommon variable errno. ERR_RE_ENTRY isreturned when the SOCKETS kernel has been
interrupted. This condition can occur only when the API is called from an interrupt service
routine. Programs designed for this type of operation, such as TSR programs activated by areal
time clock interrupt, should be coded to handle this error by re-trying the function at alater stage.

Other sources of Information

Many good books have been written on the Sockets API. Here are afew:

Pocket Guide to TCP/IP Sockets (C Version)
by Michael J. Donahoo, Kenneth L. Calvert

Windows Sockets Network Programming (Addison-Wesley Advanced Windows Series)
by Bob Quinn, et al; Hardcover

Internetworking with TCP/IP Val. 111 Client-Server Programming and Applications-Windows
Sockets Version
by Douglas E. Comer, David L. Stevens (Contributor) ;Hardcover.

The Winsock 1.1 help file (WINSOCK.HLP) is also avery useful source of information.

Porting Issues

When porting an application from another BSD Sockets environment like Unix, Linux or
Windows (Winsock), a number of issues must be kept in mind. The most important one is that
ROM-DOS is a single-user, single-task, single-thread operating system. The use of blocking calls
will suspend the system until completion, which may imply an indefinite time under abnormal or
even normal conditions. In addition no completion event such as a WSAAsyncSel ect windows
message for Winsock or a Signal for Unix/Linux is available. Only applications either using non-
blocking operations or the select() function may be ported successfully. Other applications must
be adapted to follow these guidelines.

Unlike Winsock and like BSD Sockets, an error number isreturned in the errno variableand is
only valid directly after an API call. When writing portable code to run on both SAPI and
Winsock, a simple #define can normally be used i.e.

#i fdef _Wndows

#define Errno WBAGet Last Error ()
#el se

#define Errno errno

#endi f

Chapter 3, Programming Reference 83

if (Errno == WSAEWOULDBLOCK)
{

Likein Winsock both the WSAE... of Winsock and the E... error definitions of BSD may be used
e.0. WSAEWOULDBLOCK and EWOULDBLOCK. The actual error numbers are the same as
that of Winsock, except in cases of DOS error code conflicts e.g. WSAEINVAL hasthe same
value asthe DOS EINVAL. Always using the symbolic value and not numeric values, will avoid
potential problems.

The function gethostbyaddr() will always fail with errno == WSANO_DATA.

All the file/socket operations of BSD Sockets must be translated to the * socket() versions as used
in Winsock e.g. closesocket() instead of just close().

In Linux/Unix a socket descriptor can be treated the same as a file descriptor; not so for SAPI or
Winsock.

For Winsock the WSA Startup() and WSA Cleanup() functions must be called; make it conditional
for portable code.

The "socket set” is defined differently for SAPI/Winsock on the one hand and LINUX/UNIX on
the other. Always use the FD_* macros for portable code.

Function Reference

The following sections describe the individual functions of the SOCKETS API.

accept

Accepts a connection on a socket.

C syntax
SOCKET accept (SOCKET so, struct sockaddr * psAddress, int *piAddressLen);

Parameters

So
A descriptor identifying a socket which islistening for connections after alisten().

psAddress
An optional pointer to a buffer which receives the socket address of the connecting
peer.

piAddrLen
An optional pointer to an integer which contains the length of the address psAddress.

84

Chapter 3, Programming Reference

Remarks

This function extracts the first connection on the queue of pending connections on
listening socket so, creates a new socket with the same properties as so and returns a
handle to the new socket. If no pending connections are present on the queue, and the
socket is not marked as non-blocking accept() blocks the caller until a connection is
present. If the socket is marked non-blocking and no pending connections are present on
the queue, accept() returns an error as described below. Socket so remains listening.

The argument psAddressis aresult parameter that isfilled in with the socket address of
the connecting peer. The piAddressLen is avaue-result parameter; it should initially
contain the amount of space pointed to by psAddress; on return it will contain the actual
length (in bytes) of the socket address returned. This call is used with the connection-
based SOCK_STREAM socket type. If psAddress and/or piAddressLen are equal to
NULL, then no information about the remote peer socket address of the accepted socket
isreturned.

Return Value

If no error occurs, accept () returns avalue of type SOCKET which is a descriptor for the
accepted packet. Otherwise, avalue of INVALID_SOCKET isreturned, and a specific

error codeisreturned in errno.

The integer referred to by iAddressLen initially contains the amount of space pointed to
by psAddress. On return it will contain the actual length in bytes of the socket address
returned.

Error Codes

ENETDOWN The network subsystem has failed.

EFAULT The *piAddressLen argument istoo small (lessthan the sizeof a
struct sockaddr).

EINVAL listen() was not invoked prior to accept().

EMFILE The queue is empty upon entry to accept() and there are no
descriptors available.

ENOBUFS No buffer spaceis available.

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP The referenced socket is not atype that supports connection-oriented
service.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present
to be accepted.

See Also

bind(), connect(), listen(), select(), socket()

bind

Associates alocal socket address with a socket.

Chapter 3, Programming Reference 85

C syntax
int bind (SOCKET so, const struct sockaddr * psAddress, int iAddressLen);

Parameters
So
A descriptor identifying an unbound socket.

psAddress

The socket address to assign to the socket. The sockaddr structure is defined as
follows:

struct sockaddr {
u_short sa family;
char sa_data[14];

iAddressLen
The length of the name psAddress.

Remarks

Thisroutine is used on an unconnected datagram or stream socket, before subsequent
connect()sorlisten()s. When a socket is created with socket(), it existsin a name space
(eddress family), but it has no socket address assigned. bind() establishes the local
association (host address/port number) of the socket by assigning alocal address to an
unnamed socket.

In the Internet address family, an address consists of several components. For
SOCK_DGRAM and SOCK_STREAM, the address consists of three parts: a host
address, the protocol number (set implicitly to UDP or TCP, respectively), and a port
number which identifies the application. If an application does not care what addressis
assigned to it, it may specify an Internet address equal to INADDR_ANY, aport equal to
0, or both. If the Internet addressis equal to INADDR_ANY, any appropriate network
interface will be used; this simplifies application programming in the presence of multi-
homed hosts. If the port is specified as 0, SOCKETS will assign a unique port to the
application. The application may use getsockname() after bind() to learn the address
that has been assigned to it, but note that getsockname() will not necessarily fill in the
Internet address until the socket is connected, since several Internet addresses may be
valid if the host is multi-homed.

Return Value

If no error occurs, bind() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error codeis returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

EADDRINUSE The specified addressis already in use. (Seethe SO_REUSEADDR
socket option under setsockopt().)

EFAULT TheiAddressLen argument istoo small (less than the size of a struct
sockaddr).

EAFNOSUPPORT The specified address family is not supported by this protocol.

86

Chapter 3, Programming Reference

EINVAL The socket is aready bound to an address.
ENOBUFS Not enough buffers available, too many connections.
ENOTSOCK The descriptor is not a socket.

See Also

connect(), listen(), getsockname(), setsockopt(), socket().

closesocket

Closes asocket.

C syntax
int closesocket (SOCKET so);

Parameters

so
A descriptor identifying a socket.

Remarks
This function closes a socket. More precisely, it releases the socket descriptor so, so that
further references to so will fail with the error ENOTSOCK. If thisisthelast reference

to the underlying socket, the associated naming information and queued data are
discarded.

The semantics of closesocket() are affected by the socket options SO_LINGER and
SO _DONTLINGER asfollows:

Option Interval Type of Wait for
close close?
SO_DONTLINGER Don't care Graceful No
SO LINGER Zero Hard No
SO_LINGER Non-zero Graceful Yes

If SO_LINGER isset (i.e. the |_onoff field of the linger structure is non-zero) with azero
timeout interval (I_linger is zero), closesocket() is not blocked even if queued data has
not yet been sent or acknowledged. Thisiscalled a"hard" or "abortive" close, because
the socket's virtual circuit is reset immediately, and any unsent dataislost. Any recv()
call on the remote side of the circuit will fail with ECONNRESET.

If SO_LINGER is set with a non-zero timeout interval, the closesocket() call blocks until
the remaining data has been sent or until the timeout expires. Thisis called a graceful
disconnect. Notethat if the socket is set to non-blocking and SO_LINGER isset to a
non-zero timeout, the call to closesocket() will fail with an error of EWOULDBLOCK.

If SO_DONTLINGER is set on a stream socket (i.e. the |_onoff field of the linger
structure is zero), the closesocket() cal will return immediately. However, any data
queued for transmission will be sent if possible before the underlying socket is closed.
Thisis also called agraceful disconnect. Note that in this case SOCKETS may not

Chapter 3, Programming Reference 87

release the socket and other resources for an arbitrary period, which may affect
applications which expect to use all available sockets.

Return Value

If no error occurs, closesocket() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
ENOTSOCK The descriptor is not a socket.
EWOULDBLOCK The socket is marked as nonblocking and SO_LINGER issetto a

nonzero timeout value.

See Also
accept(), socket(), ioctlsocket(), setsockopt.

connect

Establishes a connection to a peer.

C syntax
int connect (SOCKET so, const struct sockaddr * psAddress,

intiAddressLen);

Parameters

o)
A descriptor identifying an unconnected socket.

psAddress
The socket address of the peer to which the socket is to be connected.

iAddressLen
The length of psAddress.

Remarks

This function is used to create a connection to the specified foreign socket address. The
parameter so specifies an unconnected datagram or stream socket. If the socket is
unbound, unique values are assigned to the local association by the system, and the
socket is marked as bound. Notethat if the address field of the psAddress structure is all
zeroes, connect() will return the error EADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active connection isinitiated to the
foreign host using psAddress (an address in the name space of the socket). When the

socket call completes successfully, the socket is ready to send/receive data.

For a datagram socket (type SOCK_DGRAM), adefault destination is set, which will be
used on subseguent send() and recv() calls.

88

Chapter 3, Programming Reference

Return Value

If no error occurs, connect() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code is returned in errno.

On ablocking socket, the return value indicates success or failure of the connection
attempt.

On anon-blocking socket, if the return value is SOCKET_ERROR and errno indicates
an error code of EWOULDBLOCK, then your application can either:

1. Use select() to determine the completion of the connection request by checking if the
socket iswriteable, or

2. Use recv() until either no error or an error of EWOULDBLOCK is returned.

Error Codes

ENETDOWN
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
ECONNREFUSED
EDESTADDREQ
EFAULT

EINVAL
EISCONN
EMFILE
ENETUNREACH
ENOBUFS
ENOTSOCK
ETIMEDOUT
EWOULDBLOCK

See Also
accept(), bind(), getsockname(), socket() and select().getpeername

SOCKETS has detected that the network subsystem has failed.
The specified addressis already in use.

The specified addressis not available from the local machine.
Addressesin the specified family cannot be used with this socket.
The attempt to connect was forcefully rejected.

A destination address is required.

The iAddressLen argument isincorrect.

The socket is not already bound to an address.

The socket is aready connected.

No more file descriptors are available.

The network can't be reached from this host at thistime.

No buffer spaceis available. The socket cannot be connected.
The descriptor is not a socket.

Attempt to connect timed out without establishing a connection

The socket is marked as non-blocking and the connection cannot be
completed immediately. Itis possibleto select() the socket whileitis
connecting by select()ing it for writing.

Gets the socket address of the peer to which a socket is connected.

C syntax
int getpeername (SOCKET so, struct sockaddr * psAddress, int * piAddressLen);

Parameters

SO

A descriptor identifying a connected socket.

Chapter 3, Programming Reference 89

psAddress
The structure which is to receive the socket address of the peer.

piAddressLen
A pointer to the size of the psAddress structure.

Remarks

getpeer name() retrieves the socket address of the peer connected to the socket so and
storesit in the struct sockaddr identified by psAddress. It is used on a connected
datagram or stream socket.

On return, the piAddressLen argument contains the actual size of the socket address
returned in bytes.

Return Value

If no error occurs, getpeername() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EFAULT The *pi AddressLen argument is not large enough.
ENOTCONN The socket is not connected.
ENOTSOCK The descriptor is not a socket.

See Also

bind(), socket(), getsockname().

getsockname

Getsthe local socket address for a socket.

C syntax
int getsockname (SOCKET so, struct sockaddr * psAddress,

int * piAddressLen);

Parameters

so
A descriptor identifying a bound socket.

psAddress
Receives the socket address (name) of the socket.

piAddressLen
A pointer to the size of the psAddress buffer.

Remarks

getsockname() retrieves the current socket address for the specified socket descriptor in
psAddress. It isused on abound and/or connected socket specified by the so parameter.
Thelocal association isreturned. Thiscall isespecially useful when aconnect() call has
been made without doing a bind() first; this call provides the only means by which you
can determine the local association which has been set by the system.

90

Chapter 3, Programming Reference

On return, the piAddressLen argument contains the actual size of the socket address
returned in bytes.

If a socket was bound to INADDR_ANY, indicating that any of the host's | P addresses
should be used for the socket, getsockname() will not necessarily return information
about the host | P address, unless the socket has been connected with connect() or
accept(). A SOCKETS application must not assume that the |P address will be changed
from INADDR_ANY unless the socket is connected. Thisis because for a multi-homed
host the I P address that will be used for the socket is unknown unless the socket is
connected.

Return Value

If no error occurs, getsockname() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code isreturned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EFAULT The * pi AddressLen argument is not large enough.
ENOTSOCK The descriptor is not a socket.

EINVAL The socket has not been bound to an address with bind().

See Also

bind(), socket(), getpeername().

getsockopt

Retrieves a socket option.

C syntax

int getsockopt (SOCKET so, intiLeve, int iOptname,
char * pcOptval, int * piOptlen);

Parameters

SO
A descriptor identifying a socket.

iLevel
The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

iOptname

The socket option for which the valueis to be retrieved.
pcOptval

A pointer to the buffer in which the value for the requested option is to be returned.
piOptlen

A pointer to the size of the pcOptval buffer.

Chapter 3, Programming Reference

Remarks

getsockopt() retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in pcOptval. Options may exist at multiple
protocol levels, but they are always present at the uppermost "socket" level. Options
affect socket operations, such as whether an operation blocks or not, the routing of
packets, out -of-band data transfer, etc.

The value associated with the selected option is returned in the buffer pcOptval. The
integer pointed to by piOptlen should originally contain the size of this buffer; on return,
it will be set to the size of the value returned. For SO_LINGER, thiswill be the size of a
struct linger; for all other optionsit will be the size of an integer.

If the option was never set with setsockopt(), then getsockopt() returns the default value
for the option.

The following options are supported for getsockopt(). TheTypeidentifies the type of
data addressed by optval. The TCP_NODELAY option uses level IPPROTO_TCP, al
other options use level SOL_SOCKET.

Value Type M eaning Default
SO_ACCEPTCONN BOOL Socket is listen()ing. FALSE
SO_BROADCAST BOOL Socket is configured for the FALSE
transmission of broadcast
messages.
SO_DEBUG BOOL Debugging is enabled. FALSE
SO _DONTLINGER BOOL If true, the SO_LINGER option TRUE
isdisabled.
SO_DONTROUTE BOOL Routing is disabled. FALSE
SO_ERROR int Retrieve error statusand clear. 0
SO_KEEPALIVE BOOL Keepalives are being sent. FALSE
SO_LINGER struct linger * Returnsthe current linger |_onoff isO
options.
SO_OOBINLINE BOOL Out-of-band datais being FALSE
received in the normal data
stream.
SO_RCVBUF int Buffer size for receives 1460
SO_REUSEADDR BOOL The socket may beboundtoan FALSE
addresswhich isalready in use.
SO_SNDBUF int Buffer size for sends 1460
SO _TYPE int Thetype of the socket (e.g. As created
SOCK_STREAM).
TCP_NODELAY BOOL Disablesthe Nagle algorithm FALSE

for send coal escing.

Calling getsockopt() with an unsupported option will result in an error code of
ENOPROTOOPT being returned from WSAGetL astError ().

92 Chapter 3, Programming Reference

Return Value

If no error occurs, getsockopt() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EFAULT The piOptlen argument was invalid.
ENOPROTOOPT The option is unknown or unsupported. In particular,

SO_BROADCAST is not supported on sockets of type
SOCK_STREAM, while SO_ACCEPTCONN, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and SO_OOBINLINE are not
supported on sockets of type SOCK_DGRAM.

ENOTSOCK The descriptor is not a socket.

See Also
setsockopt(), socket().

htonl

Convertsau_long from host to network byte order.

C syntax
u_long htonl (u_long ulHostlong);

Parameters

ulHostlong
A 32-bit number in host byte order.

Remarks

This routine takes a 32-bit number in host byte order and returns a 32-bit number in
network byte order.

Return Value
htonl() returnsthe value in network byte order.

See Also
htons(), ntohl (), ntohs().

htons

Convertsau_short from host to network byte order.

C syntax
u_short htons (u_short usH ostshort);

Chapter 3, Programming Reference

Parameters
usHostshort
A 16-bit number in host byte order.

Remarks

This routine takes a 16-bit number in host byte order and returns a 16-bit number in
network byte order.

Return Value
htons() returns the value in network byte order.

See Also
htonl(), ntohl (), ntohs().

inet_addr

Converts a string containing a dotted addressinto anin_addr.

C syntax
unsigned long inet_addr (const char * pc);

Parameters
pc
A character string representing a number expressed in the Internet standard "."
notation.

Remarks

This function interprets the character string specified by the pc parameter. Thisstring
represents a numeric Internet address expressed in the Internet standard "." notation. The
value returned is a number suitable for use as an Internet address. All Internet addresses
arereturned in network order (bytes ordered from left to right).

Internet Addresses

Values specified using the "." notation take one of the following forms:

a.b.c.d a.b.c a.b a
When four parts are specified, each isinterpreted as a byte of data and assigned, from left
to right, to the four bytes of an Internet address. Note that when an Internet addressis
viewed as a 32-bit integer quantity on the Intel architecture, the bytes referred to above
appear as"d.c.b.a’. That is, the bytes on an Intel processor are ordered from right to left.

Note: The following notations are only used by Berkeley, and nowhere else on the
Internet. In the interests of compatibility with their software, they are supported as
specified.

When athree part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. This makes the three part
address format convenient for specifying Class B network addresses as "128.net.host".

When atwo part address is specified, the last part is interpreted as a 24-bit quantity and
placed in the right most three bytes of the network address. This makes the two part
address format convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

94 Chapter 3, Programming Reference

Return Value

If no error occurs, inet_addr () returns an unsigned long containing a suitable binary
representation of the Internet address given. I the passed-in string does not contain a
legitimate Internet address, for example if a portion of an "a.b.c.d" address exceeds 255,
inet_addr () returns the value INADDR_NONE.

See Also
inet_ntoa()

inet_ntoa

Converts anetwork address into a string in dotted format.

C syntax
char * inet_ntoa (struct in_addr sin);

Parameters

sin
A structure which represents an Internet host address.

Remarks

This function takes an Internet address structure specified by the sln parameter. It returns
an ASCII string representing the addressin "." notation as "a.b.c.d". Note that the string
returned by inet_ntoa() residesin memory which is alocated by SOCKETS. The
application should not make any assumptions about the way in which the memory is
allocated. The datais guaranteed to be valid until the next SOCKETS API call, but no
longer.

Return Value

If no error occurs, inet_ntoa() returns a char pointer to a static buffer containing the text
address in standard "." notation. Otherwise, it returns NULL. The data should be copied
before another SOCKETS call is made.

See Also
inet_addr().

ioctlsocket

Controls the mode of a socket.

C syntax
int ioctlsocket (SOCKET so, long ICmd, u_long * pulArgp);

Parameters
SO
A descriptor identifying a socket.

ICmd
The command to perform on the socket so.

Chapter 3, Programming Reference 95

pulArgp

A pointer to aparameter for ICmd.

Remarks

Thisroutine may be used on any socket in any state. It is used to get or retrieve operating
parameters associated with the socket, independent of the protocol and communications

subsystem. The following commands are supported:

Command
FIONBIO

FIONREAD

SIOCATMARK

Compatibility

Semantics

Enable or disable non-blocking mode on the socket so. pul Argp points
at an unsigned long, which is non-zero if non-blocking mode isto be
enabled and zero if it isto be disabled. When a socket is created, it
operates in blocking mode (i.e. non-blocking mode is disabled). This
is consistent with BSD sockets.

Determine the amount of data which can be read atomically from
socket so. pul Argp points at an unsigned long in which ioctlsocket()
storestheresult. If soisof type SOCK_STREAM, FIONREAD
returns the total amount of data which may be read in asingle recv();
thisis normally the same as the total amount of data queued on the
socket. If soisof type SOCK_DGRAM, FIONREAD returnsthe size
of the first datagram queued on the socket.

Determine whether or not all out-of-band data has been read. This
applies only to a socket of type SOCK_STREAM which has been
configured for in-line reception of any out-of-band data
(SO_OOBINLINE). If no out-of-band datais waiting to be read, the
operation returns TRUE. Otherwiseit returns FALSE, and the next
recv() or recvfrom() performed on the socket will retrieve some or al
of the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any remains. If there
isany normal data preceding the "urgent" (out of band) data, it will be
received in order. (Notethat arecv() or recvfrom() will never mix
out-of-band and normal datain the samecall.) argp pointsat aBOOL
inwhich ioctlsocket() storestheresult.

Thisfunction is a subset of ioctl() as used in Berkeley sockets. In particular, thereis no
command which is equivalent to FIOASY NC, while SSIOCATMARK isthe only socket-
level command which is supported.

Return Value

Upon successful completion, theioctlsocket() returns 0. Otherwise, avalue of
SOCKET_ERROR isreturned, and a specific error codeis returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

EINVAL

ENOTSOCK

ICmd is not avalid command, or pulArgp is not an acceptable
parameter for ICmd, or the command is not applicable to the type of
socket supplied

The descriptor so is not a socket.

96 Chapter 3, Programming Reference

See Also
socket(), setsockopt(), getsockopt().

listen

Establishes a socket to listen for incoming connection.

C syntax
int listen (SOCKET so, intiBacklog);

Parameters
so
A descriptor identifying a bound, unconnected socket.

iBacklog
The maximum length to which the queue of pending connections may grow.

Remarks

To accept connections, a socket isfirst created with socket(), abacklog for incoming
connections is specified with listen(), and then the connections are accepted with

accept (). listen() applies only to sockets that support connections, i.e. those of type
SOCK_STREAM. The socket so is put into "passive" mode where incoming connections
are acknowledged and queued pending acceptance by the process.

This function istypically used by servers that could have more than one connection
request at atime: if a connection request arrives with the queue full, the client will
receive an error with an indication of ECONNREFUSED.

Compatibility
iBacklog islimited (silently) to 5. Asin4.3BSD, illegal values (lessthan 1 or greater
than 5) are replaced by the nearest legal value.

Return Value

If no error occurs, listen() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EADDRINUSE An attempt has been made to listen() on an addressin use.
EINVAL The socket has not been bound with bind() or is aready connected.
EISCONN The socket is already connected.

EMFILE No more file descriptors are available.

ENOBUFS No buffer spaceis available.

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP The referenced socket is not of atype that supports the listen()

operation.

Chapter 3, Programming Reference

97

See Also
accept(), connect(), socket().

ntohl

Convertsau_long from network to host byte order.

C syntax
u_long ntohl (u_long ulNetlong);

Parameters

ulNetlong
A 32-hit number in network byte order.

Remarks

This routine takes a 32-bit number in network byte order and returns a 32-bit number in
host byte order.

Return Value
ntohl() returnsthe value in host byte order.

See Also
htonl (), htons(), ntohs().

ntohs

Convertsau_short from network to host byte order.

C syntax
u_short ntohs (u_short usNetshort);

Parameters

usNetshort
A 16-hit number in network byte order.

Remarks
This routine takes a 16-bit number in network byte order and returns a 16-bit number in
host byte order.

Return Value
ntohs() returns the value in host byte order.

See Also
htonl (), htons(), ntohl ().

Chapter 3, Programming Reference

recv

Receives datafrom a socket.

C syntax
int recv (SOCKET so, char * pcbuf, intiLen, intiFlags);

Parameters
S0
A descriptor identifying a connected socket.

pcBuf
A buffer for the incoming data.
iLen
The length of pcBuUf.
iFlags
Specifies the way in which the call is made.

Remarks

This function is used on connected datagram or stream sockets specified by the so
parameter and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information asis currently available up to
the size of the buffer supplied isreturned. If the socket has been configured for in-line
reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band datais
unread, only out-of-band datawill be returned. The application may use theioctlsocket()
SIOCATMARK to determine whether any more out-of-band data remains to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size
of the buffer supplied. If the datagram is larger than the buffer supplied, the buffer is
filled with the first part of the datagram, the excess dataiis lost, and recv() returns the

error EMSGSIZE.

If noincoming datais available at the socket, the recv() call waits for datato arrive
unless the socket is non-blocking. In this case avalue of SOCKET_ERROR is returned
with the error code set to EWOULDBLOCK. The select() call may be used to determine
when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, arecv() will complete immediately with O bytesreceived. If the

connection has been reset, arecv() will fail with the error ECONNRESET .

iFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the iFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning

MSG_PEEK Peek at theincoming data. The datais copied into the
buffer but is not removed from the input queue.

MSG_0OOB Process out-of-band data.

Chapter 3, Programming Reference 99

Return Value

If no error occurs, recv() returns the number of bytes received. If the connection has
been closed, it returns 0. Otherwise, avalue of SOCKET_ERROR isreturned, and a
specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

ENOTCONN The socket is not connected.

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it is not possible to recv() on a socket
after shutdown() has been invoked with how set to O or 2.

EWOULDBLOCK The socket is marked as non-blocking and the receive operation
would block.

EMSGSIZE The datagram was too large to fit into the specified buffer and was
truncated.

EINVAL The socket has not been bound with bind().

ECONNABORTED The virtual circuit was aborted due to timeout or other failure.

ECONNRESET Thevirtual circuit was reset by the remote side.

See Also

recvfrom(), ,recv(), send(), select(), socket()

recvfrom

Receives a datagram and store the source address.

C syntax
int recvfrom (SOCKET so, char * pcBuf, intiLen, int iFlags,
struct sockaddr * psFrom, int * piFromlen);

Parameters
SO
A descriptor identifying a bound socket.

pcBuf
A buffer for theincoming data
iLen
The length of pcBUf.
iFlags
Specifies the way in which the call is made.

psFrom
An optional pointer to a buffer which will hold the source address upon return.

100 Chapter 3, Programming Reference

piFromlen
An optional pointer to the size of the psFrom buffer.

Remarks

This function is used to read incoming data on a (possibly connected) socket and capture
the address from which the data was sent.

For sockets of type SOCK_STREAM, as much information asis currently available up to
the size of the buffer supplied is returned. If the socket has been configured for in-line
reception of out-of-band data (socket option SO_OOBINLINE) and out-of-band datais
unread, only out-of-band datawill be returned. The application may use theioctlsocket()
SIOCATMARK to determine whether any more out-of-band data remains to be read.

The psFrom and piFromlen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size
of the buffer supplied. If the datagram islarger than the buffer supplied, the buffer is
filled with thefirst part of the message, the excess dataiislost, and recvfrom() returns the
error code EMSGSIZE.

If psFromis non-zero, and the socket is of type SOCK_DGRAM, the network address of
the peer which sent t he data is copied to the corresponding struct sockaddr. The value
pointed to by piFromlenisinitialized to the size of this structure, and is modified on
return to indicate the actual size of the address stored there.

If no incoming data is available at the socket, the recvfrom() call waits for datato arrive
unless the socket is non-blocking. In this case avalue of SOCKET_ERROR is returned
with the error code set to EWOULDBLOCK. The select() call may be used to determine
when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, arecvfrom() will complete immediately with O bytes received. If
the connection has been reset recv() will fail with the error ECONNRESET.

iFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and theiFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning

MSG_PEEK Peek at theincoming data. The datais copied into the
buffer but is not removed from the input queue.

MSG_0OOB Process out-of-band data.

Return Value
If no error occurs, recvfrom() returns the number of bytes received. If the connection
has been closed, it returns 0. Otherwise, avalue of SOCKET_ERROR isreturned, and a
specific error code is returned in errno.
Error Codes
ENETDOWN SOCKETS has detected that the network subsystem has failed.

EFAULT The piFromlen argument was invalid: the psFrom buffer was too
small to accommodate the peer address.

EINVAL The socket has not been bound with bind().

Chapter 3, Programming Reference 101

ENOTCONN The socket is not connected (SOCK_STREAM only).

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it is not possible to recvfrom() on a
socket after shutdown() has been invoked with how set to 0 or 2.

EWOULDBLOCK The socket is marked as non-blocking and the recvfrom() operation
would block.

EMSGSIZE The datagram was too large to fit into the specified buffer and was
truncated.

ECONNABORTED The virtual circuit was aborted due to timeout or other failure.

ECONNRESET Thevirtual circuit was reset by the remote side.

See Also

recv(), send(), socket().

select

Determines the status of one or more sockets, waiting if necessary.

C syntax

int select (intiNfds, fd_set * psReadfds, fd_set * psWritefds,
fd_set * psExceptfds, const struct timeval * psTimeout);

Parameters

iNfds
This argument isignored and included only for the sake of compatibility.

psRadfds
An optional pointer to a set of socketsto be checked for readability.

psWritefds
An optional pointer to a set of socketsto be checked for writability

psExceptfds
An optional pointer to aset of sockets to be checked for errors.

psTimeout
The maximum time for select() to wait, or NULL for blocking operation.

Remarks

This function is used to determine the status of one or more sockets. For each socket, the
caller may request information on read, write or error status. The set of sockets for which
agiven statusis requested isindicated by an fd_set structure. Upon return, the structure
is updated to reflect the subset of these sockets which meet the specified condition, and
select() returns the number of sockets meeting the conditions. A set of macrosis
provided for manipulating an fd_set. These macros are compatible with those used in the

102

Chapter 3, Programming Reference

Berkeley software, but the underlying representation is completely different and the same
asthat used in Winsock.

The parameter psReadfds identifies those sockets which are to be checked for readability.
If the socket is currentlylisten()ing, it will be marked as readable if an incoming
connection request has been received, so that an accept() is guaranteed to complete
without blocking. For other sockets, readability means that queued datais available for
reading or, for sockets of type SOCK_STREAM, that the virtual socket corresponding to
the socket has been closed, so that arecv() or recvfrom() is guaranteed to complete
without blocking. If the virtual circuit was closed gracefully, then arecv() will return
immediately with 0 bytesread; if the virtual circuit was reset, then arecv() will complete
immediately with the error code ECONNRESET. The presence of out-of-band data will
be checked if the socket option SO_OOBINLINE has been enabled (see setsockopt()).

The parameter psWiritefds identifies those sockets which are to be checked for writability.
If asocket is connect()ing (non-blocking), writability means that the connection
establishment successfully completed. If the socket is not in the process of connect()ing,
writability means that a send() or sendto() will complete without blocking.

The parameter psExceptfds i dentifies those sockets which are to be checked for the
presence of out-of-band data or any exceptional error conditions. Note that out -of-band
datawill only be reported in thisway if the option SO_OOBINLINE is FALSE. For a
SOCK_STREAM, the breaking of the connection by the peer or dueto KEEPALIVE
failure will beindicated as an exception. If asocket is connect()ing (non-blocking),
failure of the connect attempt isindicated in psExceptfds.

Any of psReadfds, psWritefds, or psExceptfds may be given as NULL if no descriptors
are of interest.

Four macros are defined in the header file socket.h for manipulating the descriptor sets.
The variable FD_SETSIZE determines the maximum number of descriptorsin a set.
(The default value of FD_SETSIZE is 16, which may be modified by #defining
FD_SETSIZE to another value before #including socket.h.) Internally, an fd_set is

represented as an array of SOCKETSs. The macros are:

FD_CLR(so, *psSet) Removes the descriptor so from set.

FD_ISSET(so, *pSset) Nonzero if soisamember of the set, zero otherwise.
FD_SET(so, *psSet) Adds descriptor so to set.

FD_ZERO(* psSet) Initializes the set to the NULL set.

The parameter psTimeout controls how long the select() may taketo complete. If
psTimeout isanull pointer, select() will block indefinitely until at least one descriptor
meets the specified criteria. Otherwise, psT timeout pointsto a struct timeval which
specifies the maximum time that select() should wait before returning. If the timeval is
initialized to {0, 0}, select() will return immediately; thisisused to "poll" the state of the
selected sockets.

Return Value

select() returns the total number of descriptors which are ready and contained in the fd_set
structures, O if the time limit expired, or SOCKET_ERROR if an error occurred. If the return
valueis SOCKET_ERROR, errno contains the specific error code.

Chapter 3, Programming Reference 103

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

EINVAL The psTimeout valueis not valid.

ENOTSOCK One of the descriptor sets contains an entry which is not a socket.
See Also

accept(), connect(), recv(), recvfrom(), send().

send

Sends data on a connected socket.

C syntax
int send (SOCKET so, const char * pcBuf, intiLen, intiFlags);

Parameters
SO
A descriptor identifying a connected socket.

pcBuf

A buffer containing the data to be transmitted.
iLen

The length of the datain pcBuf.
iFlags

Specifies the way in which the call is made.

Remarks

send() is used on connected datagram or stream sockets and is used to write outgoing
data on a socket. For datagram sockets, care must be taken not to exceed the maximum
IP packet size of the underlying subnets. If the datais too long to pass atomically
through the underlying protocol the error EMSGSIZE is returned, and no datais
transmitted.

Note that the successful completion of a send() does not indicate that the data was
successfully delivered.

If no buffer space is available within the transport system to hold the datato be
transmitted, send() will block unless the socket has been placed in anon-blocking 1/0
mode. On non-blocking SOCK_STREAM sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it is possible to send
more data.

iFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by or-
ing any of the following vaues:

Vaue Meaning

104 Chapter 3, Programming Reference

MSG_DONTROUTE Specifies that the data should not be subject to routing
MSG_0OOB Send out-of-band data (SOCK_STREAM only)

Return Value

If no error occurs, send() returns the total number of characters sent. (Note that this may
be less than the number indicated by len.) Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

EACCES The requested addressis a broadcast address, but the appropriate flag
was not set.

EFAULT The pcBuf argument isnot in avalid part of the user address space.

ENETRESET The connection must be reset because SOCKETS dropped it.

ENOBUFS SOCKETS reports a buffer deadlock.

ENOTCONN The socket is not connected.

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it is not possible to send() on a socket
after shutdown() has been invoked with how set to 1 or 2.

EWOULDBLOCK The socket is marked as non-blocking and the requested operation
would block.

EMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is larger
than the maximum supported by SOCKETS.

EINVAL The socket has not been bound with bind().

ECONNABORTED The virtual circuit was aborted due to timeout or other failure.

ECONNRESET Thevirtual circuit was reset by the remote side.

See Also

recv(), recvfrom(), socket(), sendto().

sendto

Sends data to a specific destination.

C syntax
int sendto (SOCKET so, const char * pcBUf, intiLen, intiFlags,

const struct sockaddr * psTo, intiTolen);

Parameters

S0
A descriptor identifying a socket.

Chapter 3, Programming Reference 105

pcBuf

A buffer containing the data to be transmitted.
iLen

The length of the datain pcBuf.
iFlags

Specifies the way in which the call is made.

psTo
An optional pointer to the address of the target socket.

iTolen
The size of the addressin to.

Remarks

sendto() is used on datagram or stream sockets and is used to write outgoing dataon a
socket. For datagram sockets, care must be taken not to exceed the maximum | P packet
size of the underlying subnets. If the dataistoo long to pass atomically through the
underlying protocol the error EM SGSIZE is returned, and no data is transmitted.

Note that the successful completion of a sendto() does not indicate that the data was
successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to send a datagram to a specific
peer socket identified by the psT o parameter. On aSOCK_STREAM socket, the psT o

and iTolen parameters are ignored; in this case the sendto() is equivalent to send().

To send abroadcast (on a SOCK_DGRAM only), the address in the to parameter should
be constructed using the special |1P addressINADDR_BROADCAST (defined in
socket.h) together with the intended port number. It isgenerally inadvisable for a
broadcast datagram to exceed the size at which fragmentation may occur, which implies
that the data portion of the datagram (excluding headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the datato be
transmitted, sendto() will block unless the socket has been placed in a non-blocking I/O
mode. On non-blocking SOCK_STREAM sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both t he local
and foreign hosts. The select() call may be used to determine when it is possible to send
more data.

iFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the iFlags parameter. The latter is constructed by
or-ing any of the following values:

Vaue Meaning
MSG_DONTROUTE Specifies that the data should not be subject to routing.
MSG_0OOB Send out-of-band data (SOCK_STREAM only Out of band data)

Return Value

If no error occurs, sendto() returns the total number of characters sent. (Note that this
may be less than the number indicated by len.) Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code is returned in errno.

106 Chapter 3, Programming Reference

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.

EACCES The reguested addressis a broadcast address, but the appropriate flag
was not set.

EFAULT The pcBuf or psTo parameters are not part of the user address space,
or the psTo argument is too small (less than the sizeof a struct
sockaddr).

ENETRESET The connection must be reset because SOCKETS dropped it.

ENOBUFS SOCKETS reports a buffer deadlock.

ENOTCONN The socket is not connected (SOCK_STREAM only).

ENOTSOCK The descriptor is not a socket.

EOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it is not possible to sendto() on a
socket after shutdown() has been invoked with how set to 1 or 2.

EWOULDBLOCK The socket is marked as non-blocking and the requested operation
would block.

EMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is larger
than the maximum supported by SOCKETS.

ECONNABORTED The virtual circuit was aborted due to timeout or other failure.

ECONNRESET Thevirtual circuit was reset by the remote side.

EADDRNOTAVAIL The specified addressis not available from the local machine.

EAFNOSUPPORT Addresses in the specified family cannot be used with this socket.

EDESTADDRREQ A destination address is required.

ENETUNREACH The network can't be reached from this host at thistime.

See Also

recv(), recvfrom(), socket(), send().

setsockopt

Sets a socket option.

C syntax
int setsockopt (SOCKET so, int level, int optname,
const char * optval, int optlen);

Parameters

S0
A descriptor identifying a socket.

Chapter 3, Programming Reference 107

level

The level at which the option is defined; the only supported levels are
SOL_SOCKET and IPPROTO_TCP.

optname
The socket option for which the value isto be set.

optval
A pointer to the buffer in which the value for the requested option is supplied.

optlen
The size of the optval buffer.

Remarks

setsockopt() sets the current value for a socket option associated with a socket of any
type, in any state. Although options may exist at multiple protocol levels, this
specification only defines options that exist at the uppermost "socket" level. Options
affect socket operations, such as whet her expedited datais received in the normal data
stream, whether broadcast messages may be sent on the socket, etc.

There are two types of socket options: Boolean options that enable or disable a feature or
behavior, and options which require an integer value or structure. To enable a Boolean
option, optval pointsto anonzero integer. To disable the option optval pointsto an
integer equal to zero. optlen should be equal to sizeof(int) for Boolean options. For other
options, optval pointsto the an integer or structure that contains the desired value for the
option, and optlen is the length of the integer or structure.

SO _LINGER controls the action taken when unsent data is queued on a socket and a
closesocket() is performed. See closesocket() for adescription of the way in which the
SO_LINGER settings affect the semantics of closesocket(). The application setsthe
desired behavior by creating a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
int | _onoff;
int I _linger;
}
To enable SO_LINGER, the application should set |_onoff to a non-zero value, set
|_linger to O or the desired timeout (in seconds), and call setsockopt(). To enable
SO _DONTLINGER (i.e. disable SO_LINGER) |_onoff should be set to zero and
setsockopt () should be called.

By default, a socket may not be bound (see bind()) to alocal address which isaready in
use. On occasions, however, it may be desirable to "re-use" an address in this way.
Since every connection is uniquely identified by the combination of local and remote
addresses, there is no problem with having two sockets bound to the same local address
as long as the remote addresses are different. To inform SOCKETS that abind() ona
socket should not be disallowed because the desired addressis already in use by another
socket, the application should set the SO_REUSEADDR socket option for the socket
before issuing the bind(). Note that the option isinterpreted only at the time of the
bind(): it is therefore unnecessary (but harmless) to set the option on asocket whichis
not to be bound to an existing address, and setting or resetting the option after the bind()
has no effect on this or any other socket.

An application may request that SOCKETS enable the use of "keep-alive" packets on
TCP connections by turning on the SO_KEEPALIVE socket option. If aconnectionis

108 Chapter 3, Programming Reference

dropped as the result of "keep-alives’ the error code ENETRESET isreturned to any calls
in progress on the socket, and any subsequent callswill fail with ENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle algorithm is used
to reduce the number of small packets sent by a host by buffering unacknowledged send
data until afull-size packet can be sent. However, for some applications this algorithm
can impede performance, and TCP_NODELAY may be used to turn it off. Application
writers should not set TCP_NODELAY unless theimpact of doing so iswell-understood
and desired, since setting TCP_NODELAY can have a significant negative impact of
network performance. TCP_NODELAY isthe only supported socket option which uses
level IPPROTO_TCP; all other options use level SOL_SOCKET.

The following options are supported for setsockopt(). The Typeidentifiesthe type of

data addressed by optval.
Value Type M eaning
SO_BROADCAST BOOL Allow transmission of broadcast
messages on the socket.
SO _DEBUG BOOL Record debugging information.
SO_DONTLINGER BOOL Don't block close waiting for unsent data
to be sent. Setting thisoptionis
equivalent to setting SO_LINGER with
|_onoff set to zero.
SO_DONTROUTE BOOL Don't route: send directly to interface.
SO _KEEPALIVE BOOL Send keepalives
SO_LINGER struct linger * Linger on closeif unsent datais present
SO_OOBINLINE BOOL Receive out-of-band datain the normal
data stream.
SO_RCVBUF Int Specify buffer size for receives
SO_REUSEADDR BOOL Allow the socket to be bound to an
addresswhich isalready in use. (See
bind().)
SO_SNDBUF Int Specify buffer size for sends.
TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.
BSD options not supported for setsockopt() are:
Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listening
SO_ERROR Int Get error status and clear
SO_RCVLOWAT Int Receive low water mark
SO_RCVTIMEO Int Receive timeout
SO_SNDLOWAT Int Send low water mark
SO_SNDTIMEO Int Send timeout
SO_TYPE Int Type of the socket
IP_OPTIONS Set optionsfield in IP header.

Return Value

If no error occurs, setsockopt() returns 0. Otherwise, avalue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Chapter 3, Programming Reference

109

Error Codes
ENETDOWN

EFAULT
EINVAL
ENETRESET
ENOPROTOOPT

ENOTCONN
ENOTSOCK

See Also

SOCKETS has detected that the network subsystem has failed.
optval isnot in avalid part of the process address space.
level isnot valid, or the information in optval is not valid.
Connection has timed out when SO_KEEPALIVE is set.

The option is unknown or unsupported. In particular,
SO_BROADCAST is not supported on sockets of type
SOCK_STREAM, while SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER and SO_OOBINLINE are not supported on sockets of
type SOCK_DGRAM.

Connection has been reset when SO_KEEPALIVE is set.

The descriptor is not a socket.

bind(), getsockopt(), ioctlsocket(), socket().

shutdown

Disables sends and/or receives on a socket.

C syntax

int shutdown (SOCKET so, int how);

Parameters
SO

A descriptor identifying a socket.

how

A flag that describes what types of operation will no longer be allowed.

Remarks

shutdown () is used on all types of sockets to disable reception, transmission, or both.

If how is 0, subsequent receives on the socket will be disallowed. This has no effect on
the lower protocol layers. For TCP, the TCP window is not changed and incoming data
will be accepted (but not acknowledged) until the window is exhausted. For UDP,

incoming datagrams are accepted and queued. In no case will an ICMP error packet be

generated.

If how is 1, subsequent sends are disallowed. For TCP sockets, a FIN will be sent.

Setting how to 2 disables both sends and receives as described above.

Note that shutdown() does not close the socket, and resources attached to the socket will
not be freed until closesocket() isinvoked.

Comments

shutdown() does not block regardless of the SO_LINGER setting on the socket.

110 Chapter 3, Programming Reference

An application should not re-use a socket after it has been shut down.

Return Value

If no error occurs, shutdown() returns 0. Otherwise, avaue of SOCKET_ERROR is
returned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EINVAL how is not valid.
ENOTCONN The socket is not connected (SOCK_STREAM only).
ENOTSOCK The descriptor is not a socket.

See Also

connect(), socket().

socket

Creates a socket.

C syntax
SOCKET socket (int af, int type, int protocol);

Parameters
af

An address format specification. The only format currently supported is PF_INET,
which isthe ARPA Internet address format.

type
A type specification for the new socket.

protocol

A particular protocol to be used with the socket, or O if the caller does not wish to
specify aprotocol.

Remarks

socket() allocates a socket descriptor of the specified address family, data type and
protocol, as well asrelated resources. If aprotocol is not specified (i.e. equal to 0), the
default for the specified connection mode is used.

Only asingle protocol exists to support a particular socket type using a given address
format. However, the address family may be given as AF_UNSPEC (unspecified), in
which case the protocol parameter must be specified. The protocol number to useis

particular to the "communication domain” in which communication is to take place.
Thefallowing type specifications are supported:
Type Explanation

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte
streams with an out-of-band data transmission mechanism. Uses
TCP for the Internet address family.

Chapter 3, Programming Reference 111

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
buffers of afixed (typically small) maximum length. Uses UDP

for the Internet address family.

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must be
in a connected state before any data may be sent or received on it. A connection to
another socket is created with a connect() call. Once connected, data may be transferred
using send() and rec\) calls. When a session has been completed, a closesocket() must
be performed. Out-of-band data may also be transmitted as described in send() and
received as described in rec\).

The communications protocols used to implement a SOCK_STREAM ensure that datais
not lost or duplicated. If datafor which the peer protocol has buffer space cannot be
successfully transmitted within areasonable length of time, the connection is considered
broken and subsequent calls will fail with the error code set to ETIMEDOUT.

SOCK_DGRAM sockets allow sending and receiving of datagrams to and from arbitrary
peersusing sendto() and recvfrom(). If such a socket is connect()ed to a specific peer,
datagrams may be send to that peer send() and may be received from (only) this peer

using r ec\).

Return Value

If no error occurs, socket() returns a descriptor referencing the new socket. Otherwise, a
value of INVALID_SOCKET isreturned, and a specific error code is returned in errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
EAFNOSUPPORT The specified address family is not supported.

EMFILE No more file descriptors are available.

ENOBUFS No buffer space isavailable. The socket cannot be created.

EPROTONOSUPPORT The specified protocol is not supported.
EPROTOTYPE The specified protocol isthe wrong type for this socket.
ESOCKTNOSUPPORT The specified socket type is not supported in this address family.

See Also

accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(),
recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().

gethostbyaddr

Gets host information corresponding to an address.

C syntax
struct hostent * gethostbyaddr (const char * pcAddr, intlen, int type);

Parameters

pcAddr
A pointer to an address in network byte order.

112 Chapter 3, Programming Reference

len
The length of the address, which must be 4 for PF_INET addresses.

type
The type of the address, which must be PF_INET.

Remarks

gethostbyaddr () returns a pointer to the following structure which contains the name(s)
and address which correspond to the given address.

struct hostent {
char * h_nane;
char ** h_ali ases;
short h_addrtype;
short h_l ength;
char ** h_addr _|ist;

The members of thii structure are;
Element Usage
h_name Official name of the host (PC).
h_aliases A NULL-terminated array of aternate names.

h_addrtype Thetype of address being returned; for SOCKETS thisis always
PF_INET.

h_length The length, in bytes, of each address; for PF_INET, thisis aways 4.

h_addr_list A NULL-terminated list of addresses for the host. Addresses are returned
in network byte order.

The macro h_addr isdefined to be h_addr_list[0] for compatibility with older software.

The pointer which is returned points to a structure which is allocated by SOCKETS. The
application must never attempt to modify this structure or to free any of its components.
The application should copy any information which it needs before issuing any other
SOCKETSAPI cdlls.

Return Value

If no error occurs, gethostbyaddr () returns a pointer to the hostent structure described
above. Otherwiseit returnsaNULL pointer and a specific error number isreturned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.
WSANO_RECOVERY Non-recoverable errors, FORMERR, REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of requested type.

See Also
gethostbyname(),

Chapter 3, Programming Reference 113

gethostbyname

Gets host information corresponding to a hostname.

C syntax
struct hostent * gethostbyname (const char * pszName);

Parameters

pszName
A pointer to the name of the host.

Remarks

gethostbyname () returns a pointer to a hostent structure as described under
gethostbyaddr (). The contents of this structure correspond to the hostname pszName

The pointer which is returned points to a structure which is allocated by SOCKETS. The
application must never attempt to modify this structure or to free any of its components.
The application should copy any information which it needs before issuing any other

SOCKETSAPI cdlls.

A gethostbyname() implementation must not resolve I P address strings passed to it.
Such arequest should be treated exactly asif an unknown host name were passed. An
application with an 1P address string to resolve should use inet_addr () to convert the
string to an | P address, then gethostbyaddr () to obtain the hostent structure.

Return Value
If no error occurs, gethostbyname() returns a pointer to the hostent structure described
above. Otherwiseit returnsaNULL pointer and a specific error number is returned in
errmo.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative Answer Host not found.
WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.
WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of requested type.
See Also
gethostbyaddr()
gethostname

Return the standard host name for the local machine.

C syntax
int gethostname (char * pszName, int iAddressLen);

114 Chapter 3, Programming Reference

Parameters

pszName
A pointer to a buffer that will receive the host name.

iAddressLen
The length of the buffer.

Remarks

Thisroutine returns the name of the local host into the buffer specified by the pszName
parameter. The host name s returned as a null-terminated string. The form of the host
name is dependent on the SOCKETS configuration file. However, it is guaranteed that
the name returned will be successfully parsed by gethostbyname().

Return Value

If no error occurs, gethostname() returns 0, otherwise it returns SOCKET_ERROR and a
specific error code is returned in errno.

Error Codes

EFAULT The iAddressLen parameter istoo small
ENETDOWN SOCKETS has detected that the network subsystem has failed.
See Also
gethostbyname().
getprotobyname

Gets protocol information corresponding to a protocol name.

C syntax
struct protoent * getprotobyname (const char * pszZName);

Parameters
pszName
A pointer to a protocol name.

Remarks

getprotobyname() returns a pointer to the following structure which contains the
name(s) and protocol number which correspond to the given protocol pszName
struct protoent {
char * p_nane;

char ** p_ali ases;
short p_proto;

b
The members of this structure are:
Element Usage
p_name Official name of the protocol.

p_dliases A NULL-terminated array of aternate names.

Chapter 3, Programming Reference 115

p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is alocated by the SOCKETS
library. The application must never attempt to modify this structure or to free any of its
components. The application should copy any information which it needs before issuing
any other SOCKETS API calls.

Return Value

If no error occurs, getpr otobyname() returns a pointer to the protoent structure described
above. Otherwiseit returnsaNULL pointer and a specific error number isreturned in
errno.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of requested type.
See Also
getprotobynumber()
getprotobynumber

Gets protocol information corresponding to a protocol number.

C syntax
struct protoent * getprotobynumber (int number);

Parameters

number
A protocol number, in host byte order.

Remarks

Thisfunction returns a pointer to a protoent struct ure as described above in
getprotobyname(). The contents of the structure correspond to the given protocol
number.

The pointer which is returned points to a structure which is allocated by SOCKETS. The
application must never attempt to modify this struct ure or to free any of its components.
The application should copy any information which it needs before issuing any other
SOCKETSAPI cdlls.

Return Value

If no error occurs, getprotobynumber () returns a pointer to the protoent structure
described above. Otherwise it returnsaNULL pointer and a specific error number is
returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem has failed.

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED, NOTIMP.

116 Chapter 3, Programming Reference

WSANO_DATA Valid name, no data record of requested type.

See Also
getprotobyname()

getservbyname

Gets service information corresponding to a service name and protocol .

struct servent * getservbyname (const char * pszZName,
const char * proto);

Parameters

pszName
A pointer to a service name.

proto
An optional pointer to aprotocol name. If thisisNULL, getservbyname() returns
the first service entry for which the pszZName matches the s_name or one of the
s aliases. Otherwise getser vbyname() matches both the pszName and the proto.

Remarks

getser vbyname() returns a pointer to the following structure which contains the name(s)
and service number which correspond to the given service pszZName
struct servent {
char * s_nane;
char **s_ali ases;
short s_port;
char * s_proto;

The members of thii structure are;

Element Usage

S _name Official name of the service.

s diases A NULL-terminated array of alternate names.

s port The port number at which the service may be contacted. Port numbers are
returned in network byte order.

S_proto The name of the protocol to use when contacting the service.

The pointer which is returned points to a structure which is allocated by the SOCKETS
library. The application must never attempt to modify this structure or to free any of its
components. The application should copy any information which it needs before issuing
any other SOCKETS API cdls.

Return Value

If no error occurs, getser vbyname() returns a pointer to the servent structure described
above. Otherwiseit returnsaNULL pointer and a specific error number is returned in
ermno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem has failed.

Chapter 3, Programming Reference

117

WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

See Also
getservbyport()

getservbyport

Gets service information corresponding to a port and protocol.

C syntax
struct servent * getservbyport (int port, const char * proto);

Parameters

port
The port for aservice, in network byte order.

proto

An optional pointer to a protocol name. If thisisNULL, getservbyport() returns
the first service entry for which the port matchesthe s _port. Otherwise
getser vbyport() matches both the port and the proto.

Remarks

getservbyport() returns a pointer a servent structure as described above for
getservbyname).

The pointer which is returned points to a structure which is allocated by SOCKETS. The

application must never attempt to modify this structure or to free any of its components.
The application should copy any information which it needs before issuing any other
SOCKETSAPI calls.

Return Value

If no error occurs, getser vbyport() returns a pointer to the servent structure described
above. Otherwiseit returnsaNULL pointer and a specific error number isreturned in
errmo.

Error Codes

ENETDOWN SOCKETS has detected that the network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR, REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of requested type.

See Also

getservbyname()

118 Chapter 3, Programming Reference

CGl Application API (Server API)

Introduction

The SOCKETS web servers, HTTPD.EXE and HTTPFTPD.EXE, provide both a Spawning
Common Gateway Interface (CGI) and an Extention API with the ability to extend the server to
create dynamic web pages, perform specialized tasks, etc. One of the extentions providedisa
Server Side Includes (SSI) interface using the CGlI interface, enabling a user to create web pages
using HTML templates with variable names, which is substituted in-time with specific values

The HTTPD Extension CGI works as follows: The extension has to implement one function called
the callback function. The server has a number of functions that the extension may use, e.g.
HttpSendData. They are designed to give the extension sufficient control over any http request.

Spawning CGI

An external program, indicated by the requested URL, is spawned. All relevant information is
passed as environment variables. The program getsall input (e.g. posted data) from standard in
and sends all response through standard out.

Thistype of CGI isdiscouraged in favor of the Extension API.

The following CGI environment variables are supported:
CONTENT_TYPE
CONTENT_LENGTH
PATH, COMSPEC
REQUEST_METHOD

Enough free memory must be available when spawning a CGI program, or ho swapping or
overlaying will be attempted. Since COMMAND.COM uses all free memory, it follows that no
CGlI program will be spawned if COMMAND.COM isthe current foreground program.

CGI programs must be small and must execute reasonably quickly. While a CGI program is
executing, the HTTP server is effectively blocked and cannot service any other requests. No
console input or output should be used. A CGI program isinvoked by a URL containing a path of
/cgi-bin/<cgi-program> where <cgi-program> is the name of an executable program which must
beinthe HTTP root directory or in the path. Note that the "/cgi-bin/" part is stripped off and does
not represent areal directory. <Cgi-program> may be followed by a"?' and acommand line. On
entry to the CGI program, the environment variables listed above are set up and can be accessed.
If acommand lineis given, it can also be accessed in the normal way.

The CGI program generates a dynamic page by writing to STDOUT. When the CGI program
terminates, this output is sent to the remote client (browser). The output can consist of a header
and a body part separated by an empty line. If the header contains a“ Content-type:” line, the
content type will be set to that type and only the body will be sent to the client. Otherwise all the
output will be sent to the client using content type “text/plain”. COMMAND.COM can be invoked
as a CGl program to perform simple DOS functions e.g. directory listings. The following example
performs adirectory listing:

http://www.embedded-server.com/cgi-bin/command?/cdir

Chapter 3, Programming Reference 119

The next one performs awide directory listing using awild-card specification:

http://www.embedded-server.com/cgi-bin/command?/cdir%20*.htm%20/w

Note the use of %20 to specify a space character.

Refer to the INDEX.HTM web page for an example of various ways of calling CGI programs. The
NUM.EXE program with source code NUM.C, demonstrates the use of a header and body part
building asimple “page visited” web page:
printf("Content-type: text/htm \n\n”
"<ht M >\ n<h1>\nThi s page has been visited %l times\ n</hl>\n",
nunber) ;
printf("<P><P>Back</ A>. </ htm >\n");
Forms programming can be performed using either the GET or POST methods. When GET is
used, form datais copied to the command line and is limited to 128 charactersincluding the URL
part. When the POST method is used, the command lineis also built. In addition, form data are
available from STDIN and islimited by disk space only. See the forms programming example
consisting of FORM.HTM, FORM.EXE and FORM.C for examples of using both the GET and
POST methods.

So that you may fully understand CGI programming, this detailed explanation of the server
operation is provided.

Whenever HTTPD receives a URL containing “/cgi-bin/”, it interprets the rest of the URL asa
DOS program to spawn and run to completion. The full path parsed from the URL is used,
implying that the program should be in physical directory called “/cgi-bin/” or a subdirectory
thereof. E.g. “program.exe” should bein “%HTTP_DIR%\cgi-bin\" if the request is“ GET /cgi-
bin/program.exe”.

Whilethis“CGI program” is executing, the server can accept new server connections, but will not
respond to them before the CGI program terminates. The CGI program can be any DOS program
that is small enough to fit into available memory. Since HTTPD is blocked while the CGI program
executes, user interaction should not be used and the CGI program should completein a
reasonable time.

Operation on receiving a CGl URL:

If the CGI program nameisfollowed by a"?", therest of thelineissent asa
command line to the CGI program after converting all %n combinations.

If a* Content-Type” header is encountered, the CONTENT_TY PE environment
variableis set to the given value and if a“ Content-Length” header is
encountered, the CONTENT_LENGTH environment variableis set to the given
value. The PATH and COM SPEC environment variables are copied to the new
environment and the REQUEST_METHOD environment variableis set to
either GET or POST.

If the POST method is used, the rest of the HTTP message is copied to a
temporary file that is then re-directed to stdin. The stdout stream is redirected to
another temporary file. After completion of the request, the temporary files are
deleted. They will be created in the %oHTTPTMP% directory.

120

Chapter 3, Programming Reference

The CGI program is now invoked. This program can check the environment
variables, access the command line and in the case of a POST, read from stdin.
All output that should be passed back to the HTTP client (Browser) iswritten to
stdout. A single header line followed by an empty line, containing “ Content-
type: content_type” may be pre-pended to the data. Thisline will be used to set
the content-type of the data being sent back. If such a header is not found, the
content type will be set to “text/plain”.

Overview of the Extention API

The SOCKETSHTTP servers (HTTPD/HTTPFTPD) provide afacility to call functionsin other
modules which may be TSR or transient programs. These functions are referred to as“HTTPD
extensions”. HTTPD or HTTPFTPD must be loaded as a TSR using the /r switch. It provides an
API via software Interrupt 63Hex. The API can be located by searching for a signature containing
SockHTTPD starting 10 bytes before the interrupt entry point and terminated by a0 byte.

A CGI adapter is provided that simplifies the communication with the server. It islocated in a
file called CGIADAP.C. The adapter finds the signature and provides a C interface. It also
intercepts the callback function and performs a stack and context switch, which makes
implementing an extension much easier.

An HTTPD extension registersinterest in aspecific URL by calling the HttpRegister () API
specifying a“path”. Note that this path has nothing to do with an actual file path on the server and
will override any real path that may be used for serving static pages. The HttpRegister () function
also specifies a Callback function to be called when the actual request isreceived by HTTPD, a
DWORD User ID to be used in callbacks and whether requests should be allowed to overlap, i.e. a
new reguest can be received while still servicing a previous request or requests.

The Callback function will be called when arequest for the registered path is received and as
many times afterwards as is necessary to complete the request. It is called with a parameter
structure specifying the reason for the request, the User ID, an HTTPD handle and values specific
to the reason for the callback, e.g. a pointer to the command line on the initial callback. Other
reasons for calling the Callback function are to notify of new received data, connection closure by
the peer, readiness to accept more data and connection errors. The callback must return avalue to
indicate that it is still busy handling the request, has completed the request or wants to abort the
request with an error. The HTTPD handle will be constant and unique from the first callback to the
completion of the request.

While in the Callback function, data can be read from the peer or sent to the peer and afile can be
submitted to be sent to the peer.

Note: Extensions are responsible for sending all HTTP header fields to clients.

The following extensions have been devel oped for functional and demonstrational purposes.

SSl Interface

If you want to display the current date and time, or a certain CGI environment variable in your
otherwise static document, you can go through the trouble of writing a CGl program that outputs

Chapter 3, Programming Reference 121

this small amount of virtual data. Or better yet, you can use a powerful feature called Server Side
Includes (or SSI).

Server Side Includes are directives which you can place into your HTML documents to output
such data as environment variables and file statistics.

For adetailed introduction, please visit http://www.ora.com/info/cgi/ch05.html

A simple yet powerful interfaceis provided to perform Server Side Includes (SSI) tasks. A user
only hasto implement one predefined function and make use of only four API functionsto unlock
the power of SSI.

The working of theinterfaceis described at the top of the header filessi.h.
To use, include ssicgi.c in your project and include ssi.h in your sourcefiles. Take alook at ssi.c
for asimple example.

Extention APl Examples

Five very simple examples are included to demonstrate the usage of the Extention API. Source
codeisincluded, aswell as makefiles.

Put all .htmand .exe filesin the %HTTP_DIR% directory and start HTTPD. Load all the cgi
programs (you may use cgi.bat). All isin place now and the examples may be accessed through
index.htm

The first four examples may operate in one of two modes:

AsaTSR (resident) program: thisisthe default behavior. At this stage unloading of the TSR is
not supported. De-registration is possible by loading the program again. This routine may be
repeated.

Asatransient program: use ‘/t’ command line switch to activate. This option will immediately
spawn ‘ command.com’. From this pro mpt other cgi programs may be loaded. The program exits
when ‘command.com’ is exited by typing ‘exit’ at the prompt.

These programs are:

1. cgiecho A very simple program that accepts data from a user and echoesit back nicely
formatted. Get echoform.htm from the browser.

2. cgicount A page visit counter. Only updates between sessions if transient (cgicount /t)
Get num.htmfrom the browser.

3.cgiform Doesthe same asthe old ‘fill out the form and submit’ utility. Get caform.htm
from the browser.

4.SSI A very simple SSI implementation that demonstrates the SSI interfaces. Template.htmis
filled by some variables. Get ssi.htmfrom the browser.

Thefifth example, FFUR, (Form-base File Upload Receiver) isonly atransient program, but can
easily be adapted to be similar to therest. It handles the upload of afile asa POST command by
filling out ffur.htm,

122 Chapter 3, Programming Reference

HTTPD Function Reference

CGIADAP.Cisaninterface program a user may utilize to implement external extention CGlI

programs. Thisinterface performs stack and context switches, and provides ordinary C functions
to access the http server (HTTPD.exe).

The header fileto useis CGIADAP.H.

The APl may be used without using CGIADAP by making low level calls which are detailed
below. In this case the user must perform the required stack and context switchesif required.

HttpRegister

The HttpRegister () function registers an interest in a URL, providing a callback function. The
callback is guaranteed to only be called when DOS can be called. The DOS critical handler will be
disabled and all critical errorswill result in an access error without any user intervention. Since the
callback happens at interrupt time, it should execute for as short atime as possible. After adone or
error return, no further callbacks will be generated for the current request.

Only one callback will be active at any time. Calling an API function while executing the callback
function will not result in another callback before the current callback has returned.

C syntax
int HttpRegister(far char * pfszPath,
int (far *pfCallback)(HTTP_PARAMS far * pfsHttpParams),
int iFlags, DWORD dwUserID);

Options

pfszPath
far pointer to the string identifying a URL. It should be an exact match of the
abs _path part of the URI minusthe leading '/'. For instance, If you want to capture
all http://myserver.com/cgi -bin/getpage.exe, you should register ‘cgi-
bin/getpage.exe'.

pfCallback
Address of callback function.

Return values when returning from callback:

RET_OK not done, give me more upcalls
RET_DONE done, no more upcalls please
RET_ERR done, error

pfsHttpParams

Far pointer to HTTP parameter block.
pfsHttpParams->iReason
Reason for callback:

R_NEWREQ - New HTTP request. pszCommandLine pointsto the
command line passed in the URL. The number

Chapter 3, Programming Reference 123

contained in iVaue specifies the HTTP operation;
RQ_GET for GET and RQ_POST for POST.

R_INDATA - Input data available, iVaue contains count.
R_OUTDATA - Can send output data, iValue contains count.
R_ENDDATA - Peer closed connectionii.e. "end of input data"
R_CLOSED - Connection closed.

pfsHttpParams->iHandle

HTTPD handle, used in subsequent API callsfor this request. The user should
not modify it.

See HTAPIC.H for the other definitions
iFlags
F OVERLAP- Overlapped request (1), non-overlapped request (0).
All other bits are reserved.

dwUser|D

Value passed to HttpRegister(); thisvalueisfor use by the extension, HTTPD does
not modify it.

Return value
0: OK
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters

AH APIF_REGISTER (0)
DsS pfszPath

ES.DI pfCallback

BX iFlags

CX:DX dwUserID

Low level return parameters
Return codein AX.
Note that the stack and the data segment on entry will be that of HTTPD. Depending on

the memory model used for the extension and the amount of stack space required, it may
be required to switch stacks during the callback.

HttpDeRegister

The HttpDeRegister () function removes the interest in a URL. After this call no more callbacks
will be generated for this URL. Any requestsin progress will be terminated with an error to the
peer. Thisfunction must be called for al registrations made by a program before terminating that
program; otherwise the system will inevitably crash on any subsequent request.

C syntax
int HttpDeRegister(char far * pfszPath);

124

Chapter 3, Programming Reference

Options
pfszPath
Far pointer to URL to de-register.

Return value

0: OK

< 0: One of the error messages (SEE HTAPIC.H)
Low level calling parameters

AH APIF_DEREGISTER (1)

DSS pfszPath

Low level return parameters
Return codein AX.

HttpGetData

The HttpGetData() function can be called when a POST operation has been indicated by the
callback to get data sent to the server by the client. If more datais expected and the extension is
busy executing the callback function, a 0 return should be made from the callback indicating it is
still busy and getting more data should be attempted at the next callback.

return: >=0 - ok, bytesreceived
< 0: One of the error messages (see htapic.h)

C syntax
int HttpGetData(int iHandle, char far * pfcBuf, int iCount);
Options
iHandle
Handle passed in pfsHttpParams.
pfcBuf
Far pointer to buffer to receive data.

iCount
Length of buffer.

Return value
>=0: OK, number of bytes received.

< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters

AH APIF_GETDATA (2)
BX iHandle
DSS pfcBuf

CX iCount

Chapter 3, Programming Reference 125

Low level return parameters
Return codein AX.

HttpSendData

The HttpSendData() function is used to send datato the client.

If the return indicatesthat less than the requested number of bytes has been sent and the extension
is busy executing the callback function, a 0 return should be made from the callback indicating it
isstill busy. Then an attempt to send more data should be made at the next callback.

All the required data should be sent to the client before an HttpSubmitFile() functionis used.
After HttpSubmitFile(), HttpSendData() should not be called again.

C syntax
int HttpSendData(int iHandle, char far *pfcBuf, int iCount);
Options
iHandle
Handle passed in pfsHttpParams.

pfcBuf
Far pointer to buffer with datato send.

iCount
Length of buffer.
Return value
>= 0. number of bytes actually sent
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters

AH APIF_SENDDATA (3)
BX iHandle

DsS pcBuf

CX iCount

Low level return parameters
Return codein AX.

HttpSubmitFile

The HttpSubmitFile() function is used to submit afile to be sent to the client in response to a
request. The file will be logically appended to any data already sent using HttpSendData(). The
file should not be exclusively opened when it is submitted. After it istransmitted, transmit upcalls
will beissued normally. This givesthe user the ability to send any number of files on the
connection with arbitrary datain between.

126 Chapter 3, Programming Reference

C syntax
int HttpSubmitFile(int iHandle, char far * pfszFileName);
Options
iHandle
Handle passed in pfsHttpParams.

pfszFileName
Far pointer to name of file to submit.

Return value
0. OK
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters

AH APIF_SENDFILE (4)

BX iHandle

DsS pfszFileName
HttpGetStatus

The HttpGetStatus() function gets the number of connections to the server. It must also be used
as apolling function when the server is running in passive mode to dequeue and handle pending
reguests.

C syntax
int HttpGetStatus(void);

Return value
>=0: Number of connectionsto server.
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_GETSTATUS(6)

Low level return parameters
Return codein AX.

HttpGetVersion

The HttpGetVersion() function gets the version of the running HTTP server.

C syntax
int HttpDeRegister(void);

Return value
>=0: Version number.

Chapter 3, Programming Reference 127

< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_GETVERSION (5)

Low level return parameters
Return codein AX.

GetStackPointer/GetStackSegment

The GetStack Pointer ()/GetStack Segment() functions get the current Stack Pointer/Segment.

C syntax
int SetStackPointer (void);

int SetStack Segment (void);

Return value
Current value of Stack Pointer/Segment.

SetStackPointer/SetStackSegment

The SetStack Pointer ()/Set Stack Segment() functions set the Stack Pointer/Segment.

The stack pointer for callbacksis by default set to _SP - 1000, the first timethe HTTP APl is
called. If you would need space on the stack, or for some reason want to make it tighter, set the
stack pointer for callbacks manually. Be careful not to overwrite used memory.

C syntax
void SetStackPointer (int iPointer);
void SetStack Segment (int i Segment);
Options
iPointer
Value to set Stack Pointer to.
Return value

None

Constants and Definitions used by CGIl API
Refer to HTAPIC.H.

SSI Definitions and functions
Refer to SSI.H.

128

Chapter 3, Programming Reference

Other APIs

FTP API

FTPAPI provides both aserver and client FTP API. This API isloaded using the FTPAPI.EXE
TSR program and provides an assembler level interface at Interrupt 62Hex. It should be called
directly from your application. The documentation for thisinterfaceisfound in FTPAPI.H. A
complete “server and multiple client” sample program is provided as FTPTEST.C and
FTPTEST.EXE. It aso demonstrates using C functionsto call the API.

NETBIOS

The industry standard NETBIOS API isloaded by using the NETBIOS.COM TSR program. This
API iswidely documented and the protocols used are those specified by RFC1001 and RFC1002.
The major use of thisAPI is to run existing NETBIOS applications like the file redirector and file
server provided by the freeware PowerL AN software which provide file sharing with other
systems using SMB or |FS. Examples of that are Microsoft Lanman, Microsoft Windows and
Unix/Linux SAMBA.

SOCKETS Proprietary API

The SOCKETS Proprietary APl ismodelled very closely to theinternal structure of the
SOCKETS kernel, which hides few details from the programmer. Asaresult, it ismore difficult
to work with, and should be used only when its extended features and lowered memory footprint
are required. The documentation isonly provided inside the API.H sourcefile. The API uses
Interrupt 7F Hex by default.

Most of the application programs supplied with SOCKETS use this API. An exampleis
XPING.EXE which is also supplied in source form as XPING.C.

Chapter 4, Tutorials

Building ROM-DOS

Building ROM -DOS is accomplished with single utility named BUILD. BUILD allowsyou to
specify such parameters as which drive ROM -DOS should boot from, where ROM -DOS will run
(in ROM or RAM), and, if in ROM, what sort of file(s) your PROM programmer requires. It also
allows you to specify whether to BUILD the 7.1 or the 6.22 version of ROM -DOS.

BUILD operates interactively, prompting for information and option selections. BUILD requires
an assembler and alinker — we recommend the Borland 5.2 tools provided with the Datalight
SDTK. BUILD also requires alocator and a specialized program that compresses the ROM -DOS
data. Datalight provides these programs, named L OC.EXE and COMPRESS.EXE, with the
Software Development Tool Kit. These programs must be available in the current directory or in
the specified path.

BUILD performsthe following operations:
Assembles the SY SGEN (ROM -DOS configuration) file
Linksthe ROM -DOS kernel
Compresses ROM -DOS data
Locates the ROM -DOS kernel
BUILD creates only the ROM -DOS kernel. In the case of a ROM -DOS kernel that is bootable

from afloppy or hard disk, thefile created iSROM -DOS.SY S. In the case of aROM -DOS kernel
that is bootable from a ROM, thefile created is ROM -DOS.IMG or ROM -DOS.HEX.

Most programs, such as the command interpreter and DOS utilities (FORMAT, SY'S, and so on),
never need to be configured; they are standard across all systems.

Note: Under some circumstances BUILD may not be flexible enough to meet the special needs of
your system. For instance, ROM-DOS in ROM normally gains control viaa BIOS
extension, and it may be necessary for ROM -DOS to receive control viaadirect jump
rather than using a BIOS extension. See Chapter 8 for more information on these custom
changes.

BUILD Command Line Options

Ordinarily, BUILD will be run without any command-line options. It will then determine the
appropriate display colors and find the assembler and linker. These command-line options are
provided to correct certain error conditions.

130

Chapter 4, Tutorials

Option Description

/L Causes BUILD to locate ROM -DOS without assembling or
linking.

IN Causes BUILD to use monochrome. Non-color displays that

appear to be color displaysto BUILD, such as LCD displays,
may not be readable in full color.

Causes BUILD to pause after running each sub-program. This
option allows you to observe what command-lines BUILD is
passing to the assembler, linker and so on.

Causes BUILD to display in TTY mode rather than graphics.
This option is necessary for incompatible monitor types.

BUILD can rerun the last session using a configuration file. Each time BUILD runs, it savesalist
of your keystrokesin afile named BUILD.CFG. Thisfilecan be used, through a standard DOS
pipeinto BUILD, to repeat the last session. For example:

C \>BU LD < BUI LD. CFG

If anumber of standard sessions are planned, copy the file BUILD.CFG to some other name.
Then redirect that filename into BUILD any number of times. BUILD also creates a file named
BUILD.TXT. Thisfile contains acomplete list of the questions and the answers you sel ected
during the last BUILD session and is the same information as on BUILD’ sfinal confirmation
screen. BUILD.TXT can be referenced when calling technical support or saved with your project
for future reference.

The third output file from BUILD.EXE isBUILD.BAT. BUILD.BAT contains a complete set of
instructions for assembling, linking, compressing, and locating the version of the ROM -DOS
kernel set up in the previous run of BUILD. Executing BUILD.BAT generates a copy of the
previous ROM -DOS kernel without running the BUILD program. BUILD.BAT relies on the
existence of two other files, ROM-DOS.LNK (linking command line) and ROM-DOS.LOC
(location configuration file). Both files are generated during the BUILD session.

Note: To run BUILD.BAT, you must specify the .BAT extension, otherwise the .EXE extension is
assumed and BUILD.EXE runs.

Datalight recommends saving a copy of BUILD.BAT, ROM -DOS.LNK, ROM-DOS.LOC and
BUILD.TXT under different names or in a separate directory when you successfully create a
working ROM -DOS kernel. This ensures that you can always re-create the same working ROM -
DOS kernel configured for your exact needs.

Note: Eachrevision of BUILD may change: do not use old configuration fileson a new BUILD.

If you want to change the default colors, specify the new colorsin atext file named BUILD.COL.
The colors must be listed as four comma-separated integers, on thefirst line of thefile. The
numbers represent the background, window, error, and question colors, using the standard color
mapping. For example, to set agray background with white text, a blue text window with white
text, ared error window with white text, and a blue question prompt with yellow text, enter:

Chapter 4, Tutorials 131

C.\>COPY CON BUI LD. CcOL
127, 31, 79, 30 <Ctrl +z>

Before Running BUILD

Before you run BUILD, you will need to be prepared to make several decisions based on your
hardware, your application program needs, and your PROM programmer if needed. ROM-DOS
7.1 provides many options for configuring different levels of support.

Will you need DOS 7.1 compatibility or DOS 6.22 compatibility? DOS 7.1 gives you
the ability to work with FAT32 format disk drives. DOS 6.22 can only work with
FAT16 and FAT12 format drives. FAT16 drives have a maximum size of 8 Gig divided
into partitions with a maximum size of 2-Gig each. FAT32 drives have atheoretical limit
of 2 Terabytes. Remember to consider all of the systems that may be linked in any way
to your target system. If not all of them can access a FAT32 drive, you many want to
consider aFAT16 drive.

Will you need Long Filename support? ROM-DOS s COMMAND.COM and kernel
can be configured to allow the use of Long Filenames. The DOS kernel provides
support for Long Filenames through standard Int21h functions. The command processor
provides Long Filename support and recognition for itsinternal commands such as DIR
and COPY. Pleaserefer to the User’s Guide and Chapter 8 for more information on
Long File Names.

Will ROM-DOS boot from a floppy or hard drive or bootable flash drive? If not,
will the ROM bootable version of ROM -DOS need to copy itself to RAM at run time for
speed reasons?

What driveswill you have available on your system? Some common choices are
floppy, hard-drive, ROM, RAM, flash, and custom memory disks.

For DOS 6.22, what level of CONFIG.SY S processing support isneeded? What
drive (letter or type) will you store the CONFIG.SY Sfileon?

Does your PROM programmer require binary or Intel hex files?

BUILD provides details for each question that isasked. Thefinal screen displays asummary of
the information and the size of the ROM image file or disk system files that have been created.

BUILD Sample Sessions

BUILD allowsyou to create both a floppy/hard disk bootable version of ROM -DOS and a ROM
bootable version. You must have the assembler and linker in your path (Borland’s TASM/TLINK
combination) for BUILD to completeits process. (Thesetools are available in the Developer’'s
Toolkit). If BUILD does not find an available assembler/linker, it warns you and gives you an
option to proceed anyway or quit the BUILD process. Several examples are shown below. The
output from BUILD is shown in block letters. The user-entered responses are shown in bold. You
can press Esc to exit BUILD at any time.

132

Chapter 4, Tutorials

Example 1. Creating a Bootable Version of ROM-DOS on a Floppy Disk

This example creates a ROM -DOS on a floppy disk that can be used to boot your system. To
begin, insert aformatted floppy disk in drive A. It doesn’t matter if there are files on the disk, as
long asthereis enough free space for ROM -DOS and its command interpreter (about 80KB). If
you do not have aformatted floppy disk, use Datalight's FORMAT.COM program to format the
floppy.

To make the disk bootable, you will need to have the file ROM -DOS.SY S. The Software
Development Kit provides aready-made copy of thisfile. If you need to re-create thefile, this can
easily be done using the Build utility.

C.\ DL\ ROV DOS> BUI LD

Do you wish to Quick-Build or CustomBuild ROMDOS (QQO: Q

Woul d you like DOS 7.1 conpatibility? Y

Woul d you li ke to enabl e LFN support? N

W1l ROMDCS boot from Floppy/Hard disk? Y

Change to the ROMDOS directory on your hard disk (or whichever directory you choseto create

during the INSTALL) and run the Datalight SY S program. Please note, SY S and other utilities

such asFORMT are located in the UTILS subdirectory in original ROM -DOS 6.22 installations.
C.\ DL\ ROV DOS> SYS A

The SY S utility creates a bootable disk, creates a special boot sector, and copies the ROM -DOS
kernel files and the command interpreter (COMMAND.COM) onto the disk. SY Susesthesingle
file ROM-DOS.SY S, produced by BUILD, to generate the two system files, IBMBIO.COM and
IBMDOS.COM. Thesetwo files are placed as hidden files on the bootable disk. To verify the
existence of these files, you can use the DIR command with the system file attribute options as
follows:

C\DL\ROMDOS> DIR A: [/ AS

The SY S program requires that both ROM -DOS.SY S and COMMAND.COM are availablein the
current directory, or that Datalight’s IBMBIO.COM and IBMDOS.COM are in the root directory
of acurrently booted floppy or hard disk. If SY S cannot find these files, it prompts you for a path
for their location.

Y ou can also use the FORMAT utility to both format a disk and add the system onto it as follows:
C.\ DL\ ROM DOS> FORMAT A: /S

Example 2: Creating a Version of ROM-DOS in a ROM

This example uses a standard PC with aROM card to produce aversion of ROM -DOS (in ROM)
that may be used on any desktop PC/AT. Inthis example, ROM -DOS processes CONFIG.SY S
and loads COMMAND.COM from the floppy, but boots and executes from ROM. The system
filesIBMBIO.COM and IBMDOS.COM are not required to be on the floppy disk.

The BUILD.EXE utility isthe tool used to create a ROM version of ROM -DOS and prompts with
anumber of questions during the custombuild session described below. The Quick-Build is
usually more appropriate and much easier to run through, but in this example we are booting from
ROM but loading CONFIG.SY S from floppy disk.

Chapter 4, Tutorials 133

The following list shows the output that BUILD provides showing the prompts and the appropriate
responses for this example.

C:\ DL\ ROM DCS> BU LD

Do you wish to Quick-Build or CustomBuild ROMDOS (QC: C
Wul d you like DOS 7.1 conpatibility? N

Wiul d you like to enable LFN support? N

WIIl ROWDCS boot from Floppy/Hard di sk? N

Copy ROMDCS to RAM? N

Where shall ROW DOS data reside [70]: 70

Can a Fl oppy DCS superscede ROMDOS in ROW N

Do you want to include the Floppy/Hard disk Driver? Y
Wiul d you like to enabl e SuperBoot support? N

Al ways believe the BPB information? N

I ncl ude the Custom Menory Disk Driver? N

Include the built-in ROMD SK driver in ROWDOS? N
Read CONFI G SYS from a specific drive letter? Y

Read CONFI G SYS fromwhich drive letter: A

What | evel of CONFI G SYS processing (None, 3, 5, 6)? 6
Do you want ROM DOS boot di agnostics? Y

I ncl ude the Boot Menu? N

Use Real Time C ock Exclusively? N

Create Binary or Intel HEX file(s) as output (B/H: B
Split the output into Gdd byte and Even byte files? N

The preceding example assumes you have a ROM board to plug into your desktop PC/AT, an
EPROM programmer and a ROM large enough to hold ROM -DOS (approx. 60KB).

Program the ROM -DOS.IMG file into an EPROM, plug it into the ROM board and set the address
to D000:0. Plug the board into your desktop PC/AT, place afloppy in drive A: with Datalight’s
COMMAND.COM on it and apply power. ROM -DOS proceeds to check for a CONFIG.SY Sfile
and COMMAND.COM ondrive A: (thefloppy). At the DOS prompt, type:

A\> VER /R

Dat al i ght ROM DOS Version 6.22
Copyright (c) 1989-2001 Datalight, Inc.

Kernel Reports Version 6. 22
Kernel Resides in ROM
Ker nel Revi sion 4.11. 1403
Command Revi si on 4.11. 1403

The VER command (with the revision option) displays the ROM -DOS version and whereit is
running (ROM, RAM or high memory area).

If you want to boot from the DOS on your hard disk and bypass ROM -DOS in ROM, it is not
necessary to remove the ROM card. Hold down the Alt-key while the system boots and ROM -
DOS displays a menu of boot options. (Select Y esto the boot menu option during BUILD to
activate thisfeature.) Choose the menu option to boot DOS from hard disk.

Example 3: Creating a Diskless System with ROM-DOS

This example places ROM -DOS and a ROM disk into ROM on an AT motherboard. The example
assumes the AT motherboard has 128KB of ROM space. The ROM -DOS kernel and a ROM disk

134 Chapter 4, Tutorials

are placed in the ROM. The ROM disk contains the files COMMAND.COM, TRANSFER.EXE,
VDISK.SYS and CONFIG.SYS. Thisexample creates binary images used for input by the PROM
programmer. Theimage files can be Intel hex files or split files, depending on the needs of your
programmer.

ROM-DOS requires about 57KB ROM and the ROM disk another 72KB for atotal of 126KB
ROM space. These sizes may change as new features are added to the BIOS, ROM -DOS or the
command interpreter.

These two files are common to most diskless systems.
ROM-DOS kernel (ROM -DOS.IMG)
ROM disk (ROMDISK.IMG)

The file ROM-DOS.IMG is created using the BUILD program asin the previous example. This
example uses Quick-Build instead of the CustomBuild to simplify the operation shown below.

C:\ DL\ ROM DOS> BU LD

Do you wish to Quick-Build or CustomBuild ROMDOS (QO: Q

Wiul d you like DOS 7.1 conpatibility? N

Wul d you like to enable LFN support? N

WIIl ROWDCS boot from Floppy/Hard di sk? N

OCreate Binary or Intel HEX file(s) as output (B/H: B

Split the output into Odd byte and Even byte files? N

BUILD has now created the file ROM -DOS.IMG. Place thisfilein your PROM programmer
directory. Refer to ‘Chapter 10, Programming ROM-DOS into ROM’ if you have any difficulty
during this stage.

Finaly, create the ROM disk. Y ou can do this by placing the previously mentioned filesinto a
directory tree and running the ROMDISK.EXE utility. Use the following DOS commands:

C:\ DL\ ROM DOS> MKDI R TEMPDI R

C.\ DL\ ROVt DOS> COPY COMVAND. COM TEMPDI R
C.\ DL\ ROM DOS> COPY TRANSFER. EXE TEMPDI R
C:\ DL\ ROM DOs> COPY VDI SK. SYS TEMPDI R

C.\ DL\ ROM DOS> COPY CON TEMPDI R\ CONFI G. SYS
DEVI CE=VDI SK. SYS 64 <Cirl +Z>

Now run the ROMDISK.EXE program as shown to create the ROM disk with the files
COMMAND.COM, TRANSFER.EXE, VDISK.SY S, and CONFIG.SYS.
C.\ DL\ ROV DOS> ROWDI SK TEMPDI R

\ COMVAND. COM
\ TRANSFER. EXE

\ VDI SK. SYS

\ CONFI G SYS

ROM Di sk | mage Vol ure ' ROM DI SK

Built from C: \ DL\ ROVt DOS\ TEMPDI R\ *, *
Pl aced in ROM DI SK. | MG

95232 bytes total ROM disk size
128 bytes in boot sector
1152 bytes in 7 FAT sectors
256 bytes in root directory

Chapter 4, Tutorials 135

93696 bytes in 4 user file(s)
0 bytes avail abl e on disk

128 bytes in each of 744 sectors

The ROMDISK program creates the file ROM -DISK.IMG. Place thisfile into the PROM

programmer directory along with ROM -DOS.IMG. If you have difficulty creating a ROM DISK,
see the section 'Creating a ROM Disk.’ below. Now you need to program these images into one
ROM. One way this can be doneisto use PROMERGE, which is provided in the SDTK.

C. \ PROVS> PROMERGE 128K romdisk.ing O romdos.ing -128K

Y our memory MAP then should look like the following:

FFFFFh
BIOS
F0000h not used
ROM-DOS
E2800h not used
ROM disk
DO000h

Diskless ROM-DOS Memory Map

The ROM-DISK PROM is placed in physical address D000:0 through E000:27FF. The ROM -
DOS PROM islocated at E000:2800 through E00O:FFFF. The system is assumed to contain a
BIOSwhich islocated at the standard address, FO00:0 through FOOO: FFFF

Turn on the power to the AT motherboard and the system boots using ROM -DOS.

ROM-DOS is now up and running on a diskless system. This system hasa ROM disk asdrive A:
and a 64KB RAM disk (with the help of VDISK.SYS) asdrive B:. The TRANSFER program

placed on the ROM disk allows you to copy programs over the console serial port into the RAM
disk.

Creating a ROM Disk

A ROM disk, like afast write-protected floppy disk, contains all of the parts of a standard disk.
Each disk consists of aboot sector, aFile Allocation Table (FAT), aroot directory, and any files
that are to be included on the disk. From the point of view of ROM -DOS and any application, the
ROM disk appears asanormal disk drive.

136

Chapter 4, Tutorials

The ROM disk image is built using the ROMDISK.EXE utility, which creates ROM disks from a
directory tree on your hard disk. Thefile that the ROMDISK utility outputsis suitable for input to
your PROM programmer. The ROMDISK utility can create:

ROM disksup to 32MB
ROM disks with directories and subdirectories
ROM disks containing programs that can execute-in-place (refer to Appendix C)

A ROM disk istypically used in diskless systems to hold applications and/or data. A ROM disk is
similar to aRAM disk used under DOS, except that it isread-only and always residesin ROM or
linear flash memory.

For the ROM disk to be recognized by ROM -DOS and used as a boot drive, a piece of code called
the ROM disk driver must be included within the ROM -DOS kernel. The BUILD program, which
creates versions of ROM -DOS specifically for your system, provides the option of including the
ROM disk driver. Custom memory disk drives, which recognize and use ROM disk images, can
also be built-in to ROM -DOS or loaded by means of CONFIG.SYS.

Running ROMDISK To Create a Disk in ROM

Y ou can run the ROMDISK utility at the command line by entering “ROMDISK” with or without
command line options. When run without command line options, ROMDISK displays a summary
of the available options. ROMDISK allows you to produce a binary image or an Intel hex file,
representing the ROM disk. Thisfileis programmed into ROM to create a ROM disk. The ROM
disk has the contents of a standard disk including a boot record, FAT, root directory and data area.
The sector size, which defaultsto 128 bytes, may be set by entering the sector size on the
ROMDISK command line. Thereis no limit to the number of files that may be placed on aROM
disk other than the above-mentioned limit of 32MB.

Place all of thefilesto be included on the ROM disk in adirectory (the directory may contain
subdirectories). Thedirectory you create becomes the root directory on the ROM disk. All
subdirectoriesremain at levels below the root directory.

Use the /S option to transfer subdirectories to the ROM disk. Without the /S option, only thefiles
in the root directory areincluded. The syntax issimilar to XCOPY, with the destination always a
file containing the ROM disk. The following example places the contents of the TEMPDIR
directory, including subdirectories, in the image file DISK.IMG.

Chapter 4, Tutorials

137

Example:

C.\ DL\ ROV DOS> ROMDI SK TEMPDI R DI SK. | MG /' s

\ COMVAND. COM
\ TRANSFER. EXE

\ VDI SK. SYS
\ CONFI G. SYS

\ UTI LS\ FORVAT. COM
\ UTI LS\ SYS. COM

ROM Di sk Vol une ' ROM DI SK
Built from C:\ DL\ ROVDOS\ TEMPDI R\ *. *
Placed in DI SK | MG

114944 bytes total ROM disk size
128 bytes in boot sector
1408 bytes in 11 FAT sectors
256 bytes in root directory
128 bytes in 1 directories
113024 bytes in 6 user file(s)
0 bytes avail abl e on disk

128 bytes in each of 898 sectors

Thefile created by ROMDISK.EXE defaults to an image file but can also be an Intel hex file
using command line options. The created file must be programmed into ROM and located in the
80x86 memory space. The ROM disk must always start on a paragraph boundary.

ROMDISK Options

The ROMDISK utility has the following command line options to configure the output file. Two
of these options are used for the RXE tools. Please refer to Chapter 11 for more information.

Option

Description

/D<Seg>
IE

IF#

IH[#]

N[

10

Defines the RXE Data Segment Name (default isDATA).

Prevents extended records from being placed in the Intel hex output. These
records are ordinarily placed in a hex file by default.

Setsthefill bytes. The default isafill byte of OxFF. The number following the
/F option is assumed to be in hexadecimal format.

Produces an Intel hex file. An optional number following the /H option specifies
the actual address of the start of the ROM disk. The start addressisrequired for
EXE filesthat are to be placed in and executed from ROM. The default address

is 0xCO00O0.

Produces an imagefile. The optional number following the /I option specifiesthe
actual address of the start of the ROM disk. The start address argument is
required for EXE files that are to be placed in and executed from ROM. The
default address is 0xC000.

Omits the timestamp from the volume label.

138

Chapter 4, Tutorials

Option Description
IR# Chooses a hexadecimal interrupt for RXE (default is 90h).
/S TellsROMDISK to include all the subdirectories found within the selected

source directory in the ROM disk image.

IT Displays statistics on the ROM disk but does not actually create the image or hex
file. Thisisuseful when you need to make sure that the required filesfit into the
available space.

N str” Sets the volume label to something other than ROMDISK. The volume label
string can be up to 11 characters and must be in quotes.
1Z# Specifies the sector size, in decimal, of the ROM disk. The default sector sizeis

128 bytes. The only legal values for this option are 128, 256, and 512.

Configuring the ROM Disk Device Driver

The ROM disk image produced by ROMDISK.EXE can be placed in a system in several ways: in
conventional memory (under the 1M B boundary), paged into a window in the 80x86 address
space, or in extended memory.

The standard ROM disk device driver provided in ROM -DOS supports a ROM disk in
conventional memory between the addresses of 40:0 and FFFF:0. This standard ROM disk device
driver searches for the start of the disk beginning at a specified segment (usually C000:0). The
starting search segment can be specified while building ROM -DOS with BUILD.EXE.

A ROM disk device driver that searches for aROM disk in paged memory, or exended memory,

may be developed by using the code templates provided in the MEMDISK subdirectory. Refer to
‘Using a Custom Memory Disk’ on page 141 for more details. If the standard built-in ROM disk
driver must be modified, the code can be found in DEVROM.ASM in the DEV SRC subdirectory.

Including Device Drivers

ROM -DOS communicates with hardware through both built-in and installable device drivers.
These drivers process all the low-level |/O and hardware-related functions such as setting the
system clock, reading from a disk or writing to the display. This processing frees ROM-DOS
from the task and, more importantly, from any knowledge of the hardware platform.

This section providesan overview of the device driversthat are built-into the ROM -DOS kernel,
alist of required and optional device drivers, aswell as methods for including new or modified
device driversin your ROM-DOS installation. This chapter also assumes that you understand the
term “device driver” and are familiar with how to install a device driver by statementsin the
CONFIG.SY Sfile.

ROM-DOS Device Drivers

ROM-DOS includes all the device drivers necessary to start a system from ROM, floppy disk, or
hard disk. In addition to built-in device drivers, this SDK includes sample device drivers that can
beinstalled from CONFIG.SY Sor built-in to the ROM -DOS kernel.

Chapter 4, Tutorials 139

Built-in device drivers are those drivers that have been linked in with ROM-DOS. They are
initialized before installed device drivers get initialized, and are generally those devices that will
remain standard and constant on your system.

Since ROM -DOS does all of its communication with the hardware through device drivers, afew
built-in drivers are mandatory to start asystem. These built-in device driversinclude the console,
the clock, and at least one disk device (either the ROM disk device driver, floppy/hard disk device
driver, or acustom disk devicedriver).

The consoleisrequired to display error messages. 1n systems with no console (or those with a
serial port acting as a console), the console driver may be modified to display no output. The
clock driver is needed to update the date and time of files aswell asto provide the DOS date and
time functions.

A disk driver isrequired in any system. At least one disk must be available to ROM-DOS to find
and process CONFIG.SY S and/or load the command interpreter or initial application, whichever
applies. ROM -DOS haltsif there are no disk devices. The other built-in device drivers, listed
below, can be helpful in many systems, but are not required by ROM -DOS.

Console (CON)

Clock (CLOCK$)

Printer (PRN)

Seria (AUX)

Com port (COM)

Null (NUL)

Floppy/hard disk

ROM disk
The ROM -DOS SDK includes the source code for avariety of configurable device drivers. These
drivers, found in the MEMDISK and DEV SRC directories, can be compiled and installed in
CONFIG.SY Sor built-in to the ROM -DOS kernel to add functionality to the operating system.

No attempt is made in this section to describe the contents of any of these drivers or how they
operate.

Writing Device Drivers

Typically, the only type of device driver you need to write for ROM -DOS s an installable driver,
the type loaded from CONFIG.SYS. Installable device drivers are the most flexible way to create
adriver under ROM-DOS. Thereis no limitation to the size of the code of the device driver, other
than available RAM. Character devices can even override the built-in character devices by using
exactly the same name as the built-in counterpart.

Thereis only one drawback to making a device driver installable from CONFIG.SY S instead of
built-in. The driver must either be present on one of the built-in disks or on adisk device that has
been previously installed. The devicedrivers provided inthe MEMDISK subdirectory can be
used as templates for writing your own custom device drivers.

If you want to write abuilt-in device driver (one that islinked in with ROM -DOS and not installed
through CONFIG.SY S), here are some special considerations:

140

Chapter 4, Tutorials

The segment nomenclature must agree with ROM -DOS.
Thetotal ROM-DOS code must be less than 64KB.
Thetotal ROM -DOS data and stack must be |ess than 64K B.

The return address upon initialization isignored. Built-in devices cannot allocate
memory.

Multiple devicesin onefile are allowed, but require special treatment.

The code cannot modify itself in any way.

ROM -DOS supported math functions need to be used instead of compiler math function.
Refer to ' Using a Custom Memory Disk.’

Onereason for adding a new built-in device into ROM -DOS isto provide a new type of disk
device from which CONFIG.SY S is processed or the starting application isloaded. ROM-DOS
aready has built-in floppy, hard, and ROM disk drivers.

The command interpreter COMMAND.COM can typically be loaded from a disk device installed
during CONFIG.SY S processing, so COMMAND.COM does not need to reside on abuilt-in disk.

Note: Device driver names should conform to standard DOS 6.22 8.3 file naming conventions
even if the DOS kernel supports long filenames.

Adding New Device Drivers

Installable device drivers are included in your ROM -DOS installation by using a DEVICE=
statement in the file CONFIG.SY S. For example:

DEVI CE=VDI SK. SYS 1024 /e

The standard built-in device drivers are located in the object library file named ROMDOS.LIB.
When ROM -DOS is built, the linker (TLINK) loads each device specified in SY SGEN.ASM from
the ROMDOS.LIB file. If you have created your own built-in driver, you can either add the driver
to the ROM-DOS library or make a new library named USER.LIB. Datalight recommends adding
new or replacement driversinto USER.LIB to make sure the integrity of the original ROM -DOS
library fileis not compromised.

If the driver you created isintended to replace a standard built-in driver, ROM -DOS uses the
driver inthe USER.LIB fileinstead of the driver of the same name in the file ROM -DOS.LIB.
USER.LIB drivers always take precedence over ROM -DOS.LIB drivers when there are two
drivers with the same name.

Note: If you are using Datalight’'s MEMDISK.ASM and aclient code module, no changesto the
SYSGEN.ASM file need to be made. Follow theinstructions outlined in * Using a Custom
Memory Disk’ for creating a built-in device and using the BUILD.EXE utility. For all
other custom devices, use the following instructions.

The new device driver source files must be compiled or assembled into object files. This can be
done with Borland language tools and with reference to the compiler manuals.

Chapter 4, Tutorials 141

Example:
Tasm / Mk devprn.asm

Place the resulting object filesinto the ROMDOS.LIB or USER.LIB file using alibrary
maintenance utility (TLIB). The next time ROM -DOS.SY Sislinked, the new device drivers will
beincluded in that version of ROM-DOS.SY S

Using Borland’ s library maintenance utility (TLIB), the following command replaces the ROM
disk device driver object file (.OBJ) in the original ROMDOS.LIB file. It also produces afile
named ROMDOS.LST that lists the object files inthelibrary and all public labels.

C.\>TLI B ROVDCS. LI B - +devrom obj, rondos. | st
To add DEVROM.OBJto the USER.LIB library fileinstead, type:

C\>TLI B USER LI B +devrom obj, user.| st

If thefile USER.LIB did not previously exist, TLIB createsit.

Note: The version of TLIB provided in the Datalight SDTK requires HHMEM.SY Sto be loaded
when it isrun from aDOS platform.

Adding Device Drivers to SYSGEN

Once abuilt-in device driver has been compiled (or assembled) and added to one of the library
files (ROMDOS.LIB or USER.LIB), update SY SGEN.ASM to include the device driver. If the
built-in driver is areplacement for a standard built-in driver (such as_comx for COM1-COM4),
no changes need to be made to SY SGEN.ASM. [f the built-in driver is new, such as a special
built-in disk driver, then SY SGEN.ASM must be informed. To do this, locate the section “ A
NULL Terminated Array of Built-in Devices’ in SY SGEN that listsall built-in drivers. Add the
following lines to the appropriate group of definitions:

extrn _newdi skx: byte

dw OFFSET _DEVDATA: newdi skx

Substitute the name of your driver for _newdiskx. These linesinform the linker (TLINK) that a
label by the name of _newdiskx should be linked into the ROM -DOS program. Thislabel is
found in either the ROM -DOS or USER library (ROMDOS.LIB or USER.LIB).

Using a Custom Memory Disk

ROM and RAM disks are the basis of diskless systems. and the possible configurations for such
disks are asvaried as the systems using them. A RAM disk may be implemented as battery -
backed static RAM, a ROM disk as paged EPROMs, or adisk could be created using flash
memory, which can later be updated in the field.

A ROM disk is necessarily built into a diskless system, enabling ROM -DOS to read
CONFIG.SY Sand/or load the first program. A built-in RAM disk may also be required in some
cases. Installable devices are desirable for some systems due to the advantage of command line
options over built-in device drivers.

142

Chapter 4, Tutorials

ROM -DOS includes complete source code for several types of memory disks. Look inthe
MEMDISK subdirectory for examples. The examplesinclude a paged ROM disk, aRAM disk, a
ROM disk, and an extended memory disk driver.

The ROM -DOS configurable memory disk allows you to build a custom memory disk device
driver by modifying only the initialize, read, and write, functions. This disk can be configured to
be either built-in or installable (loaded by CONFIG.SY S). The custom memory disk is made up of
two modules, the base module and the client code module. The memory disk base moduleis
named MEMDISK.ASM and handles all of the direct interaction with DOS. The client code
modules are named to reflect their function, such as MEMPAGED.C and MEMROM.C.

Creating a Custom-Memory Disk

The process for creating a custom memory disk consists of the following basic steps:

Review the source code modules of the intended driver inthe MEMDISK subdirectory.
For example, for afixed address disk, review MEMFIXED.C; for a paged memory disk,
review MEMPAGED.C and SC400PAG.C. (SC400PAG.C isan example paging
algorithm set up for an Elan SC400 platform). The header of each module describes the
driver type and uses. Make appropriate modifications to the source code based on the
commented sections in the beginning of each module. For example, for a paged disk,
modify the paging routines to match your hardware paging mechanism; for a fixed
address disk, supply the destination address for the memory disk.

Review the MAKEFILE section appropriate to the driver you are building. Most sections
contain two target output files. For example, there are instructions for building
MEMPAGED.SY S (the CONFIG.SY Sinstallable version of the driver) and
MEMPAGED.LIB (the built-in version of the driver) in the paged memory disk section.
The target nameis MEMPAGED.LIB: however, the actual output fileis named
USER.LIB.

Switch to the MEMDISK subdirectory and run Borland’s MAKE utility with the
appropriate target name. For example, to create a built-in paged memory disk, run the
following:

MAKE MEMPAGED. LI B

To create astand-alone installable version, run:
MAKE MEMPAGED. SYS

Note: If thedriver is prepared as built-in, anew USER.LIB fileis created in the ROM -DOS root
directory. If you already had other itemsin a USER.LIB file, you may want to make a copy
of the original file. Y ou may also haveto use the TLIB command to add individual object
modulesinto the library file if more than one memory disk or other custom code isto be
included inthe USER.LI B file

The BUILD program handles the remainder of the process. Refer to * Chapter 4, Building ROM -
DOS' for more information on the BUILD program. Part of the BUILD process involves linking
in library modules. Y our new memory disk code will be placed in alibrary file called USER.LIB.

Chapter 4, Tutorials 143

The BUILD program will look for thisfile when it links, and include your driversinto the ROM -
DOS kernel.

When you run the BUILD program, you are prompted to include a custom memory disk. Answer
yesfor this prompt to add the new built-in driver. You must have a USER.LIB file present in the
same directory as the BUILD program when including a custom memory disk, or errorswill be
generated during the compilation processes.

Memory Disk Base

The memory disk base module is the non-changeable part of the memory disk. The base module
may be configured using assembler options. Available options for the base are placed in the top
lines of codein MEMDISK.ASM. The MAKEFILE aready defines the necessary options for
both stand-alone and built-in versions of the drivers. Additional options can be added to the
MAKEFILE or entered on the command line. If you customize the options, the options set in the
MEMDISK module must be in agreement with the options set in the client code module. Most of
these configuration options follow the standard conventions of undefined = false or off, and
defined = true or on. The exception is STACKSIZE, in bytes, which defaultsto 1024.

About Client Code Functions

The client code module of the memory disk must be ported to the different environmentsin which
itisto beused. Thefunctions can be coded in any language but they must conform to the C-
language calling sequences and conventions. The client code module(s) must supply some of the
functions listed below, depending on their purpose.

A ROM disk requires only the meminit and memr ead functions while a RAM disk requires these
plus memwrite. All other functions are optional.

TSR disks must support memuninit, removable disks must support memchanged, while disks
that support IOCTL must support the memioctl function.

meminit
The meminit function is called once during disk initialization.

int memnit(struct BPB bpb[], char far *cndline, unsigned *endseg,

int drv);
The BIOS parameter block, pointed to by the argument bpb, should be filled in during meminit.
The cmdline argument is used for parsing the device command line. This pointer pointsto the
start of the memory disk filename in the CONFIG.SY S deviceline. The cmdline argument has no
meaning for built-in devices, but can be useful for devicesinstalled in CONFIG.SYS. The return
value of meminit isthe number of drives.

The endseg argument, when first called, pointsto avalue that is the next available segment, the
segment used for aRAM disk if DOS RAM isto be used for the disk. If memory at the endseg is
being used, endseg must be updated to account for the amount of memory used. If DOSRAM is
not to be used, or this device isto be built-in, then this argument is ignored.

144

Chapter 4, Tutorials

A built-in RAM disk must allocate memory using the DOS memory allocate function (Int 21h,
AH=48), in the meminit function. Thisishow abuilt-in RAM disk would get DOS RAM for disk
storage.

Note: Thisis used only for built-in devices, not those that are CONFIG.SY Sloadable. Installable
devices should update endseg.

memread and memwrite

bool nenread(long offset, unsigned |len, char far * buffer);

bool memmite(long offset, unsigned len, char far * buffer);
The memread and memwrite functions use a 32-bit value, named offset, to specify where on the
disk aread or write operation occurs. Thisvalueisusually, but not always, a multiple of the
sector size. Thelen argument is a 16-bit unsigned number that defines the size of the read or write
in bytes. The buffer argument is a 32-bit far pointer that defines where the disk datais read from
or written to. The return value from memread and memwrite is a non-zero for success and zero
for failure. A failed return value causes a critical error.

memchanged

The memchanged function notifies DOS that aremovable disk has been removed.
i nt nenchanged(struct BPB *bpb)
memchangedis a C-callable device driver media-check.

The value returned from the memchanged function indicatesif the disk has changed or not. A
return value of -1 indicates that the disk has changed while areturn value of 1 indicates that the
disk has not changed. If the memory disk is not aremovable disk, memchanged should always
return 1. If the memory disk isaPCMCIA memory card that can be removed, this functionis
critical.

A return value of 0 from memchanged indicates that the disk may have changed. A O return
valueis acceptable but not recommended as most modern BIOSs today support a change-line-
status-function that returns a definite status. (The O return value was used on the original PC,
which did not support such aBIOS call.)

memuninit and memioctl

memuninit and memioctl have the following syntax:

voi d nenuni ni t (voi d)
bool mem octl (unsi gned category, char far * buffer);

Public Fields

There are also two datafields are defined in MEMDISK.ASM that are intended to be used or set
by the client code:

unsi gned char mnenerr;
unsi gned char nenunit;

The client code should set memerr when an error occurs during any of the memread, memwrite
or other client functions. memerr isignored if no error occurs so there is no need to reset or clear

Chapter 4, Tutorials 145

it. The memunit field is set by MEMDISK.ASM before passing control to the client code. The
unit number will be in the range of 0 ton wheren isthe number of drives returned by meminit
upon driver initialization.

Terminate-and-Stay-Resident (TSR) Drivers

Y ou can configure a custom disk driver so that it can load from the DOS prompt or from a batch
file, aswell asfrom CONFIG.SYS. The TSRDEV switch in MEMDISK.ASM should be set to
truefor thisoption. A custom disk driver installed at the DOS prompt can also be unloaded from
memory, thereby freeing the memory and drive letters occupied by that driver. The following
functions and data are defined only in the stand-alone TSR-enabled custom disk driver:

void tsr_setidstr(char * tsr_id);

int tsr_uninstall (void);

int mendev_al ready_| oaded(voi d)

find_free_drives;

The functiontsr_setidstr (char * tsr_id) allows your custom memory disk to have a unique
identifying sequence of bytes. Y ou can also retain the default identification sequences. Each
custom memory disk driver should have a unique identifier.

Usetsr_uninstall to remove the latest driver from memory. tsr_uninstall failsif the device is not
found or was loaded from CONFIG.SYS instead of from the command line.

Usetsr_already_loaded to determineif a previous copy of the custom disk driver has been
installed. Multiple copies are allowed as a convenience in the event your driver implementation
needs to check for another disk already resident.

Thefind_free drives function checks both CDSs and DOS drive #s to determine the next
sequential DOS drive number to use.. That is, if LASTDRIVE isset to E: and drives A:, B:, and
C: are used, there are two drive letters available (D: and E:).

Memory Disk Math Routines

For built-in device drivers, ROM -DOS includes a set of supported math functions. The
MEMDISK.H module includes those functions not already built-in to ROM-DOS. The built-in
ROM -DOS functions, plus the math routinesin MEMDISK.H, replace the math library normally
linked in at compilation time. Memory disk client code that will be built-in should not use long
math but equivalent functions. The supported math functions and their definition prototypes
include:

t ypedef unsigned | ong ul ong;

t ypedef unsi gned char uchar;
t ypedef int bool

ul ong pascal _Ilshru(ulong 1, unsigned u);
ul ong pascal _Ishlu(ulong 1, unsigned u);
ul ong pascal _Imulu(ulong 1, unsigned u);
ul ong pascal _ldivu(ulong ul, unsigned u)

ulong _Idiv(ulong |Val, ulong | D videBy);

ul ong _I mod(ulong | Val, ulong | ModBy);

voi d pascal memove(void *to,void *from unsigned |en);

voi d pascal fnencpy(void far *dst,void far *src, unsigned |len);
voi d pascal menset(void *dst, uchar val, unsigned |en);

146

Chapter 4, Tutorials

voi d pascal frenset(void far *dst, uchar val, unsigned |len);int

pascal strlen(char *s);

int pascal fstrlen(char far * s);
/1 Note: Unlike the standard C nencnp, this nencnp returns
I TRUE if strings are identical, FALSE if different.
Il Same for fmencnp.

int pascal mencnp(char *strl1, char *str2, unsigned |len);

int pascal frencnp(char far *strl, char far *str2, unsigned |en);

Making Special Configuration Changes

While the BUILD program allows complete and easy configuration of ROM -DOS for most
installations, there may be designs that require you to make changesto SY SGEN.ASM prior to
running the BUILD program. This chapter covers the areas of system configuration that may need
special attention to accommodate your design.

In addition, this section describes how boot-time configuration can be controlled through the
standard CONFIG.SY Sfile or by reconfiguring the BIOS to change the way ROM -DOS operates.

Configuring ROM-DOS Through SYSGEN.ASM

Thefile SY SGEN.ASM allows you to configure the operation of ROM -DOS at compiletime.
Most of the optionsin SY SGEN are configured by answering prompts when running the BUILD
program as described in Chapter 4. The following configuration options are described in
subsequent sections; you can modify their behavior without having to read the source code.

Assembly defines

List of built-in devices
Power save option
CONFIG.SY S defaults
Initial environment

ROM disk search address

Assembly Defines

The assembly defines configure ROM -DOS in SY SGEN.ASM. The BUILD program normally
setsthese as it assembles the SY SGEN.ASM file. The defines are described in the following
table.

Option Description

BCHECK=1 Display boot diagnostics. BUILD will set or clear this option as
appropriate.

BEXT=1 Boot from BIOS extension; otherwise it will boot from disk. BUILD
always sets this option.

BOOTDEV=id ROM -DOS can boot from any device (floppy, hard or ROM disk). Theid

code specifies which one: 00=floppy, 80H=hard, 10H= ROM disk.

147

Chapter 4, Tutorials
Option Description
BOOTDRV=n ROM -DOS can boot from a specific driver letter. Choose the boot drive
letter where 0=A, 1=B, 2=C, and so on.
BOOTMENU=1 Display the following menu upon boot time. The menu lets the user
choose from where to load DOS, and/or where to read CONFIG.SY S.
ROM -DOS boot options:
1. Load DOS off floppy
2. Load DOS off hard disk
3. Make floppy default drive
4. Make hard disk default drive
5. Make ROM disk default drive
6. Continue asif Alt key not pressed
DATASEG=seg Hard-code the ROM -DOS DATA segment (no fix-ups). Otherwise LOC
will set the DATA segment address. Set seg equal to the destination
segment in RAM. Thisvalue can be either hex or decimal.
FLOPCFG=1 Regardless of boot drive, ROM -DOS looks for CONFIG.SY S on the
floppy disk before going to the ROM disk.
FLOPCHK=1 A floppy disk DOS can supersede ROM -DOS in ROM.
GENERIC=1 Include generic custom memory disk driver.
HARDCHK=1 Bootable hard disk partition can supersede ROM -DOS in ROM.
NOFLOP=1 No floppy or hard disk is needed (ROM disk only). Thiscan save
approximately 3KB of ROM.
NOROM=1 No ROM disk is desired This can save approximately 1KB of ROM/disk.
RAMBOOT=seg Copy ROM -DOS from ROM to RAM upon boot for faster execution. Set
seg equal to the destination segment in RAM. Default for BUILD.EXE is
70h. Thisvalue can be either hexadecimal or decimal.
RDISK=seg Choose the segment where the built-in ROM disk driver starts searching
for the ROM disk.
USERTC=1 Use the real-time clock exclusively instead of the BIOS ticks for the time.

The following exampl e shows the use of some assembly defines/options.
TASM / Mk [DBEXT=1 / DBOOTMENU=1 SYSCEN,

The BUILD program automatically generates the above assembly command-line given the
appropriate options. Thereisusually no need to assemble SY SGEN.ASM manually.

The example configures ROM -DOS to boot from a BIOS extension. It also causes ROM -DOS to
display aboot menu if the user holds down the Alt-key during boot up.

148

Chapter 4, Tutorials

Listing Built-in Devices

Built-in device drivers can be added to ROM -DOS by placing the name of the device driver
header in alist of block device driversterminated by aNULL (0) character. A new device may be
added by placing its PUBLIC label namein thelist.

Note: Theblock devicedriverslist must have at least one disk device entry so that thefile
CONFIG.SY Sand theinitial program can be read from disk at boot time.

Theonly disk device required in thislist, for an embedded system, isthe ROM disk driver. This
device driver is supplied in source form on the distribution disk. The PUBLIC name for this
deviceis—romx and it isfound in the file DEVROM.ASM.

The code and data size of ROM -DOS can be decreased by commenting-out external references to
unused devicesin SY SGEN.ASM. If no references are made to adevicein SY SGEN.ASM, the
device will not be linked in fromthe library. The size of ROM -DOS decreases by the amount of
code/data space occupied by that device driver.

The following example shows the list of built-in deviceslisted in SY SGEN.ASM:
public _built_in
bUI It_in LABEL WORD
buil't-in character devices
dw OFFSET DGROUP: _nul x ; MUST be 1st
dw OFFSET _DEVDATA: conx ; MJST be 2nd
dw OFFSET _DEVDATA: clkx ; MJST be 3rd
dw OFFSET _DEVDATA: _conx ; not required
dw OFFSET _DEVDATA: _pr nx not required
war ni ng: while the C(]\/Iand PRN(LPT) drivers are not required, the
absence of them can cause sonewhat odd behavior in some prograns.
; built-in disk devices (at least 1 disk required)
| FNDEF NOFLOP
dw OFFSET _DEVDATA: fdhdx ; optional
ENDI F
| FNDEF NCROM
dw OFFSET _DEVDATA: ronx ; optional
ENDI F
| FDEF GENERI C
dw OFFSET _DEVDATA: _nenx ; optional
ENDI F

dw O ; NULL term nator for |ist

Note: SYSGEN.ASM hastwo complete lists of the device drivers. Onelist is defined with the
“dw OFFSET” syntax as shown in the abovelisting. The other list is defined with the
“extrn” syntax and appearsin SY SGEN.ASM immediately before the above list. Y ou must
add or remove drivers of the same namein both the “dw OFFSET” and “extrn” lists.

Chapter 4, Tutorials 149

Power Save Option

ROM-DOS, when not actively performing an application function, spends much of itstime
waiting for user input. During that time, ROM-DOS checks the BIOS for another character,
performs an Int 28h, and then goes back to checking the BIOS for a character. Even when thereis
no user input, the computer is using electrical power. It is possibleto avoid this waste of power on
computers that support a static state or aslower processor speed.

To use the power save option, the BIOS Int 16h, function 00h is modified to switch into low
power mode until akey ispressed. A powersave flag causes ROM-DOS to either poll the BIOS or
cal it and wait. If powersaveisO0, then ROM-DOS pollsthe BIOS (Int 16h Function 1). If
powersave is set to 1, ROM -DOS calls the BIOS and waits (Int 16h Function 0).

CONFIG.SYS Defaults

This section of SY SGEN.ASM allows you to define the default number of FILES, BUFFERS, the
status of BREAK, and most options you normally set in CONFIG.SYS. However, Datalight does
not recommend modifying this section since it is easier to modify CONFIG.SYS. If your system
does not use a CONFIG.SY Sfile, it may be necessary to set these valuesin the SY SGEN.ASM
file.

One such CONFIG.SY S default isthe command interpreter COMMAND.COM, thefirst program
executed by ROM-DOS. Theinitial program for an embedded system could be your application
program. SY SGEN.ASM allowsyou to set the program name and the initial command line
argument string. Both strings must be null terminated.

c_public init_break,init_files,init_buffers

c_public init_fcbs,init_lastdrive,init_shel

_init_break db 0 ; BREAK=OFF
_init_files dw 8 ; FILES=8 (0=cal c)
_init_buffers dw 0 ; BUFFERS= (0=cal c)
_init_fcbs dw 2 ; FCBS=2
_init_lastdrive db ‘'FE ; LASTDRI VE=E
_init_shell db “COWAND. COM / P*, 0 ; SHELL=COMVAND. COM / P

Also in this section are settings for the position of the Confirmation message when using the
MENU commands with Config.sys and the keystoke definitions if a user wants to use alternate
choices from the traditional F5and F8 commands. In addition, thereis a setting for changing the
position of the timeout counter displayed when usingaMENUDEFAULT command.

The DOS Version

The DOS version may be set to anything desired, but be aware that all the internal structureswork
like DOS 6.x regardless of the version reported.

public dos_ver

I F USI NG_FAT32

_dos_ver label word
db 07H ;o AL
db OAH ; AH

maj or version (DCS 7.1)
m nor version (7.10)

150

Chapter 4, Tutorials

el se
_dos_ver label word
db 06H ; AL = major version (DOS 6)
db 16H ; AH = minor version (6.22)
ENDI F

The Initial Environment

Theinitial environment string and maximum size (in paragraphs) are set in SY SGEN.ASM.

There may be multiple environment variables, each separated by a zero-byte. The end of the
environment is determined by a second zero-byte. The variable env—para, iswhere the number of
environment paragraphsis specified. Thisvalue must be larger than the space required to hold the
initial environment string.

c_public env_para, env_string
_env_para dw 10H
_env_string db “PATH=", 0
db “PROWPT=pg”, 0
db 0

The ROM Disk Start Address

The start address of the ROM disk is specified with a 16-bit segment value namedromdisk. This
value represents the first segment at which the ROM disk driver looks for avalid ROM disk. The
driver searches ROM for the ROM disk until it finds avalid disk or reaches the end of memory
(segment OxFFFF). The following example causes the ROM disk driver to begin its search at
segment CO00 and search until it reaches OXFFFF.

| FDEF RDI SK

rondi sk dw RDI SK ; segment of ROM di sk
ELSE

rondi sk dw O0CO00H ; segnent of ROM di sk
ENDI F

The BUILD program prompts for a change in the default search segment. Datalight recommends
that you do not make a change to the segment in SY SGEN.ASM, but let BUILD handleit.

Configuring Through CONFIG.SYS

ROM -DOS supports the standard system configuration file, CONFIG.SYS. Thisfile contains
commands that reconfigure the system during boot-up. The CONFIG.SY S commands supported
by ROM -DOS include;

BREAK= MENUDEFAULT=
BUFFERS= MENUI TEM=
COUNTRY= NEWFI LE=
DEVI CE= NUM. OCK=
DEVI CEH G+ REM=

DOS= SET=

FCBS= SHELL=

FI LES= STACKS=

| NCLUDE= SUBMENU=

I NSTALL= SW TCHES=
LASTDRI VE= ;

Chapter 4, Tutorials 151

MVENUCOLOR= ?

The NEWFILE command is unique to ROM -DOS and allows CONFIG.SY Sto transfer control to
another CONFIG.SY Sfile, possibly on some other drive or in asubdirectory. Use the NEWFILE
command as follows.

NEWFI LE=fi | enane. ext [, driver.sys [paraneters]]

Y ou can use this command to pass control to anew driveinstalled via CONFIG.SY S as shown in
the following example.

NEWFI LE= NEWCFG. SYS, NEWDI SK. SYS E:

When ROM -DOS is configured with the BUILD program, you can select from the following four
levels of CONFIG.SY S processing. These options are available only if your kernel does not

support LFNs

DOS Level Commands Included

331 BREAK, BUFFERS, COUNTRY, DEVICE, FCBS, FILES,
LASTDRIVE, NEWFILE, REM and SHELL.

5.0 All commands available with DOS 3.31, plus DOS, INSTALL, and
STACKS.

6.0 All commands from both the DOS 3.31 and 5.0 levels with the addition
of DEVICEHIGH, INCLUDE, MENUCOLOR, MENUDEFAULT,
MENUITEM, NUMLOCK, SET, SUBMENU, and SWITCHES, the
semicolon (;), and the question mark (?).

71 Thisisthe sasme as DOS 6.0

ROM-DOS Long Filename Support

ROM -DOS now optionally contains Windows 98-style long filename support in the kernel. As
indicated in “ Configuring Through CONFIG.SYS” on page 150. Y ou must have enabled LFNs
when building ROM -DOS in order to utilize this support.

ROM -DOS operating system provides support for the following long filename functions. The
longname disk layout is fully compatible with Windows 98 long filenames.

Int 21h

5704 - Get Last Access Date/Time

5705 - Set Last Access Date/Time

5706 - Get Creation Date/Time

5707 - Set Creation Date/Time

7139 - Create Longname Directory

713A - Delete Longname Directory

713B - Set Current Working Longname Directory
7141 - Delete Longname File

7143 - Get/Set Longname Attributes/Dates

7147 - Get Current Working Longname Directory
714E - Find First Longname

152

Chapter 4, Tutorials

714F - Find Next Longname

7156 - Rename Longname File or Directory
7160 - Get Longname Path

716C - Open/Create Longname File

71A0 - Get Longname Volume Info

71A1 - Find Close

71A6 - Get File Info By Handle

Please note that the undocumented function 71A8, Get Longname Alias, is no longer supported by
M S-DOS; consequently there is no support for it in ROM -DOS either.

Configuring Through the BIOS

Another possible method of configuring ROM -DOS is to change the BIOS to handle new
hardware while leaving the normal device driversintact. For example, you could modify Int 13h
of the BIOS so that that the floppy and hard disk drivers operate on some different disk hardware,
such a PCMCIA memory cards.

The advantage of modifying the BIOS, especially if you have your own BIOS that you are familiar
with, isthe time saved in writing and debugging a new device driver. In many cases, the standard
drivers will work normally through a modified BIOS.

Creating a Custom Sign-on Message

ROM -DOS allows for flexible sign-on messages. The standard “ Starting ROM -DOS...” message
can be customized for use with special evaluation kits, or to allow alternative sign-on screens. To
make your own sign-on, follow these steps:

1. Madify the “starting_msg” stringin DOSIGNON.C, found in the DEVSRC directory of
theinstalled SDK.

2. Compile DOSIGNON.C to DOSIGNON.OBJ (linking is not necessary), for example
bcc -c dosignon.c

O, if you are using code defines
bcc —c -DMYMSG=1 -DEVALKI T=1 dosi gnon. c
3. Place DOSIGNON.OBJin USER.LIB using Borland’s TLIB command. Refer to
‘Including Device Drivers’ for an example of using the TLIB command. Please note,
the TLIB Librarian utility provided with the Datalight SDTK requires 32-bit DPMI
support. Running TLIB from a Win95/Win98 DOS box or using a memory manager that
provides DPMI support will be required.

4. Run BUILD to create aversion of ROM -DOS with the new sign-on message.
The new sign-on replaces the “ Starting ROM -DOS...” message.

The Command Interpreter

The command interpreter loaded by ROM -DOS may be specified with the SHELL command in
the SY SGEN.ASM or CONFIG.SY Sfile. The command interpreter is normally the
COMMAND.COM program.

SHELL=COVMAND. COM / p /e: 512

Chapter 4, Tutorials 153

For many embedded systems, a command interpreter may not be required. Any program can start
at boot time and have full use of ROM-DOS, asis usually the case with single-application
systems.

By specifying a command interpreter other than COMMAND.COM, the ROM or disk space
(about 45K B) and RAM space (about 3KB) required by COMMAND.COM can be saved.
However, without COMMAND.COM l|oaded, the DOS prompt and the processing of batch files
(including AUTOEXEC.BAT) are not available. Optionally, Datalight provides a mini-command
interpreter that supports alimited command line and batch processing.

The command interpreter loaded at boot time must adhere to the following rules.

It must never terminate. If it does terminate, ROM -DOS prints a message indicating that
the command interpreter has quit and then halts the system.

It must handle Ctrl+C if it can occur. If Ctrl+C isencountered and it is not handled, then
the shell program is terminated and the system halts.

It must handle Int 24h (critical error handler) if it can occur. If acritical error is
encountered and it is not handled, the shell program is terminated and the system halts.

Debugging and Troubleshooting

ROM-DOS provides standard M SDOS functionality in the ROM environment. This allows most
of the actual program development to be performed on a desktop PC running DOS. The
remainder of the development can be done on the target hardware under ROM-DOS. The routines
that most likely require debugging under ROM -DOS are those device drivers and other program
segments that access non-standard, non-PC hardware. This section provides information and
solutions about problems that may occur during the startup process for ROM -DOS on your
system. Such problems may also be attributable to your BIOS.

Print Statements

The simplest method for debugging your program is running your program with embedded print
statements at meaningful points. This method of debugging requires a console available on your
target system. The console may be aserial port or a display/keyboard combination.

The program can be uploaded to atarget system RAM disk using the COMM or TRANSFER
programs. The TRANSFER program takes afile from the host PC, across the console, and places
the file on aRAM disk or other disk device on the target system. Refer to the ROM-DOS User’'s
Guide for more information on the TRANSFER and COMM programs.

Remote Debugging

The Borland Turbo Debugger provided in the Datalight STDK can be used in the remote mode if
there are COM1 or COM2 serial ports available on the system. TD-REMOTE provides an ideal
interface and flexible debugging. For more information, refer to the Borland help files.

Local Debugging

If your target hardware has a PC-compatible display and keyboard, you can use your normal
debugger on the target hardware under ROM -DOS. Some debuggers check for and require a

154 Chapter 4, Tutorials

particular DOS version number. Y ou can use the VER command (refer to the ROM -DOS User’s
Guide) to change the version number reported by ROM-DOS to that required by your debugger.

Troubleshooting with Boot Diagnostics

ROM -DOS has the ability to display special characters at each stage of the boot process. These
characters provide a method for determining where in the boot process an error occurs. These
characters are referred to as boot diagnostics and are included in the ROM -DOS kernel if you
answer Y to the following prompt displayed by the BUILD program.

Do you want boot Diagnostics (Y/N: Y
To perform amanual link of ROM -DOS, assemble the file SY SGEN.ASM with the option

/DBCHECK=1 enabled. See‘, Making Special Configuration Changes' for details on manually
linking ROM -DOS.

The boot diagnostics are displayed (viaBIOS Int 10h, function OEh) to indicate completion of
each step of the boot process. The boot process steps are listed below.

Boot Description
Diagnostic
B BIOS extension has gained control. Thisis only displayed when ROM-DOS is
placed in ROM. When booted from a disk, this boot diagnostic is not shown.
0 Interrupts are enabled, ROM -DOS has control, and the first instructions have
been executed.
1 Startup code (decompress) has completed. The startup code copiesthe DOS

datainto RAM. The DOS codeis also copied for adisk boot of ROM -DOS or a
ROM boot with the copy to RAM feature enabled. To make room for data
decompression, the startup code rel ocates the ROM -DOS code to the top of
memory. The datais decompressed to its full sizein lower memory. The stack
isalso set up and uninitialized datais zeroed. Boot failures at this point are
typically dueto insufficient RAM to accommodate the code and full data size, or
an incomplete ROM -DOS image in ROM.

2 Minimum DOS structures allocated. The memory pool is set up and the default
structures are at the top of RAM. The DOS interrupts are also set up.

3 Interrupts have been initialized. Boot failures at this point may be due to another
process using an interrupt that ROM -DOS has set up for itsown use. An
example of thisis awatchdog timer that traps Int 21h.

4 Built-in devices have been initialized. BIOS interrupt calls are made during the
initialization (Int 13h for disk drive support, Int 10h for video). Failures may be
due to incomplete BIOS interrupt support or afailure to find a disk of any type
in the system.

Root PSP is now in existence.
Default drive has been determined.

Thefirst pass of CONFIG.SY S processing is complete. All CONFIG.SYS
statements except the INSTALL = are processed (device drivers are |oaded).
Standard handles such as PRN, AUX, and CON are opened.

Chapter 4, Tutorials 155

Boot Description
Diagnostic
8 All internal structures allocated. TSR programs listed in CONFIG.SY S
INSTALL= statements are loaded. Failure at this point may indicate a faulty
TSR program.
9 ROM -DOS has been loaded high (if DOS=HIGH). The DOS buffers have been

crested and copied to the HMA area if sufficient space.

DOS prompt The standard handles have been re-opened and the final program has been called

or application vialnt 21h. Thisprogram istypicaly COMMAND.COM or an application

start program. Failure to reach the DOS prompt after boot diagnostic 9 is usually
caused by not finding the program (either not on the disk or a corrupted file), a
command interpreter from a different operating system, or a faulty application
program. Failure may also be due to insufficient RAM to run the command
interpreter or application program.

Some Common Problems

This section lists some of the more commonly encountered problems. Refer to the Support section
on our Datalight website for additional information, white papers, and links to our technical
support.

Problem: During the boot process the following error message appears:
No Di sk Devices System Hal ted

Solution: The ROM-DOS kernel did not find a disk containing of any sort in the system. Check
the SY SGEN.ASM file for the block devicelist. Be surethat thereisat least one disk in thelist.

If the system has only a ROM disk, then the ROM disk driver was unable to find it in memory.
Check the SY SGEN.ASM file for the segment address from which the ROM disk started its
search for. Look at variable—romdisk in file SY SGEN.ASM.

Problem: During the boot process the following error message appears:
ROM DOS Not Found, System Halted
Solution: The BIOS did not find the ROM -DOS BIOS Extension.

The ROM -DOS BIOS extension must be placed in the addressable memory. If thisis not the
case, the BIOS does not search low enough in memory for the ROM -DOS BIOS extension.

Problem: During the boot process the following error message appears:
BAD or M ssing ProgramNane

Solution: The ProgramName was not found on the default disk or it was not loadable. Check the
init—prog variable in the file SY SGEN.ASM and check that the file is on the disk.

Once all options and devices have been set and ROM -DOS has been linked and located, it istime
to program ROM -DOS into ROM. There may be up to three files connected with ROM -DOS that
are programmed into ROM:

156 Chapter 4, Tutorials

ROM-DOS.HEX - the ROM -DOS kernel
ROMDISK.HEX - the ROM disk image
BIOS.HEX - theBIOS (optional)

Thethreefileslisted above have the . HEX extension for Intel hex files, but could also be .IMG
binary image files. Thefirst file, ROM-DOS.HEX, is approximately 56 to 76KB unless
significant device support has been added or removed. The second file, ROMDISK.HEX, allows
for booting on acompletely diskless system and can range from 1KB to just under IMB in size. A
practical limitisusually 512K B for conventional memory installation.

The optional BIOS is designed to fit in a minimum of ROM along with ROM-DOS. Although the
BIOS.HEX is optional, ROM-DOS does require aBIOSto run. Since some hardware has a pre-
installed BIOS, you may not have to program an EPROM with the BIOS. For apre-installed
BIOS, it is helpful to know its size and memory location so that you can properly locate ROM -
DOS.

A typical BIOS starts searching for a BIOS extension signature starting at address C000:0H and
then continues the search on every 2KB boundary up to address FO00:0H or F800:0H. Thisallows
ROM-DOS to be placed in ROM anywhere between C000:0H and FO00:0H. Under unusual
circumstances, ROM -DOS can be placed outside this address range and be initiated via a special
BIOS extension program.

AsROM-DOS boots, it searches for Datalight ROM disk signatures in memory (assuming you
have included a ROM disk driver in your configuration). By default, ROM -DOS searches for
ROM disks within the same search range as the standard BIOS. ROM -DOS searches only on 16-
byte paragraph boundaries. A 16-byte boundary is represented by an addressnnnn:0 wherennnn
indicates avalue in the default range of COO0H to FOOOH. However, ROM-DOS is flexible
enough to allow the search range to be expanded.

Y ou can specify anew starting point for the search when you run the BUILD program to
configure ROM -DOS. The ROM disk can be located either above or below ROM-DOS in
conventional memory or, with the addition of specially modified drivers, in extended or paged
memory.

Creating ROMable Applications

In many embedded computer systems, mechanical disk drives are emulated by a combination of
data structures and code that are contained in ROM. DOS ROM disks exist within the executable
first megabyte of address space of Intel processors operating in Real Mode. Because programs
routinely need to update data as part of their normal execution, an ordinary .COM or .EXE file
must first be copied to RAM by DOS before the program can executed. When execution spaceis
at apremium, these duplicated ROM and RAM images are wasteful of system resources. If a
strategy could be developed to execute at least part of the program directly from ROM, without
copying that portion of the program image to RAM, then embedded system manufacturers could
realize significant space savings. The Datalight ROMable EXecutable (RXE) conversion splits
the program parts and changes the program’ s code to Execute in Place (X1P), thus saving RAM.

Chapter 4, Tutorials 157

For more information, please refer to the document file RXE Theory of Operation.PDF in the
RXE directory of your installed SDK.

RXE Convert Operation

The RXE convert (RXE_CVT.EXE) utility will modify a program in such away that the
program’s code will execute out of ROM but the program’ s data will be allocated at execution
time by DOS. Therefore, the code segment for the program will be known for an RXE program,
but the data segment will not be. Each of the fixups must be evaluated and handled specially by
RXE_CVT.

Syntax
RXE_CVT [/C] [/Ixq [/Q] [/R] [/] [/W] [/L] InFile DataSegName MemorySeg

[OutFile]
Remarks

The RXE verify tool (RXEVERFY) should be used to verify al conversions.
Options

/C Tellsthe conversion to continue automatically if errors found.

/Ixx Allows the programmer to set the RXE interrupt number (in hexadecimal).

/Q Quiet mode.

/R Names the OutFile with an extension of .RXE.

/S Usedto get the RXE file size.

/W Displays all warning messages.

/L Should be used if your .MAP file has mixed or lower case segment names.

RXE Optimize Operation

RXE optimize (RXEOPTIM.EXE) isautility designed to reduce the size of an RXE program by
removing some of the unused spacein thefile. When RXE_CVT creates an RXE program, the
size of thefixup list is retained even though most of the fixup entries have been removed.
Furthermore, most compilers allocate more space than is necessary for the original fixup list.

To optimize the RXE program, RXE optimize must first determine how much unused spaceisin
the EXE file. It will then remove the unused space and adjust all the remaining fixups, which have
already been performed by RXE_CVT, accordingly. Finally the new entry points are computed
and anew checksum is performed.

Syntax
RXEOPTIM exename rxename

Remarks
The RXE verify tool (RXEVERFY) should be used to verify all optimizations.

RXE Verify Operation

RXE verify (RXEVERFY .EXE) is designed to re-evaluate all the work performed by RXE
convert and RXE optimize. This utility looks at each fixup and makes sure that the fixup case was

158

Chapter 4, Tutorials

handled appropriately. It will also ensure that no unnecessary modifications were made to the rest
of the program.

Syntax
RXEVERFY [/O] exename rxename

Remarks
RXE verify can be used to verify the results of both RXE optimize and RXE convert.

Options
/O Forces RXE verify to detect the RXE input file as an RXE optimized file.

Power Management

Overview

As more and more computers become mobile, batteries become the desired power source. Power
management is a critical issue for battery-powered systems. Power management requires
cooperation between applications, DOS, the BIOS and the hardware. Intel and Microsoft have
defined aDOS/BIOS level of cooperation that an application can query. This specification, named
Advanced Power Management (APM), involves a TSR program (POWER.EXE, hereafter referred
to as POWER) provided by Datalight, which communicates to the BIOS and applications.

POWER provides areal mode APM 1.1 connection to the APM BIOS and complies with all
requirements of the appropriate specification— see the APM 1.2 Specification ‘ Appendix D —
APM Driver Considerations.” The specific functionality of both the application and BIOS
interfaces are explained in the paragraphs that follow. Copies of the APM 1.2 BIOS interface
specification may be obtained by searching for “APM 1.2" at the following locations on the World
Wide Web:

http://ww. m crosoft.com
http://ww. intel.com

Operation of POWER.EXE and the Application Interface

Asan APM driver, POWER allows application programs to notify it when they areidle and to
reject requests by other applications, by POWER itself or by an APM BIOS to transition the
system into alower power state. POWER also provides a mechanism by which application
programs can be notified of changes in system power availability.

POWER interfaces with DOS application programs using a two-phase software interface. This
interface employs interrupt 2Fh and allows a DOS program to:

Notify the system that it isidle and initiate a request to reduce the system power level.
Receive notification of changesin the system power availability.

Reject requests by other applications, by POWER or by the APM BIOS to reduce the
system power level.

Chapter 4, Tutorials 159

While POWER does monitor anumber of devicesfor activity that precludes reducing system
power availability, it does not provide power management for individual devices. POWER aways
reduces the available power state for the CPU and for all devices which may be controlled by the
APM BIOS. Thisfeature does not preclude an APM BIOS from reducing the power level of
individual devices (either automatically or cooperatively), but POWER does not initiate such
power reductions. If an APM BIOS generates a request to reduce a specific device's power level,
POWER broadcasts the event to any cooperating applications. |f no applications reject the device
specific power down request, POWER calls the BIOS to change the device' s power state.

Notifying the System that the Application is Idle

Applications notify POWER that they areidle by loading the AX register with the value 1680h
and then generating Int 2Fh. No statusis returned by the POWER interrupt handler and no
registers are changed by POWER.

Note: Int 2Fh is an often-called interrupt that may be used by many programs. POWER cannot
guarantee that another program in the Int 2Fh chain will not change any register values.

Receiving Notification of System Power Changes

To receive notification of APM events, an application must hook Int 2Fh and process callsin
which the AX register contains the value 530Bh. On receipt of such an interrupt, the BX register
contains an APM event code. POWER acts only on those events listed below.

Event Event Type Event Code
SYSTEM_STANDBY Request 0001h
SYSTEM_SUSPEND Request 0002h
END_NORMAL_SUSPEND Notification 0003h
END_CRITICAL_SUSPEND Notification 0004h
BATTERY_LOW Notification 0005h
POWER_STATUS CHANGE Notification 0006h
UPDATE_TIME Notification 0007h
CRITICAL_SUSPEND Notification 0008h
USER_STANDBY Request 0009h
USER_SUSPEND Request 000Ah
END_NORMAL_STANDBY Notification 000Bh

POWER respondsto each of the above APM events with the actions defined inthe APM 1.2
specification. POW ER transmits any event code returned by the APM BIOSto any APM
applications that have hooked the Int 2F chain. Applications, and, device drivers may augment the
functionality of POWER by processing these additional events and either controlling the
availability of specific devices directly or initiating application-idle signals as appropriate.

160

Chapter 4, Tutorials

Whenever an application receives a notification event or accepts a power change request it should
pass the event onto the next handler in the Int 2Fh chain without altering any of the original
register values.

Rejecting Requests to Change the Current Power State

Applications may reject any of the request event types defined inthe table on page 159. To reject
an APM request event, the application setsthe BH register to 80h and immediately returns from
the Int 2Fh call without altering any other register values.

It ispossible for other APM -aware applications to be running that have early positionsin the Int
2Fhinterrupt chain. Itisalso possible for such applications to have already saved their operating
state in response to a power-down request before a subsequent APM application rejects the
request. POWER generates aresume notification event following any rejected power-down
request to allow any applications, which may have acted on the request, to return to afully-
operational state.

The BIOS Interface to POWER

When POWER detects an APM BIOS that supports version 1.1 or later of the APM BIOS
Specification, it initiates a version 1.1 connection to the APM BIOS in real mode. Asaclient of
the APM BIOS, POWER acts only on those event codes defined in the table on page 159.
POWER complies with the APM 1.2 Specification and uses the following APM BIOS functions
viathe software Int 15h interface.

APM BIOS Function Function Number
APM_INSTALLATION_CHECK 5300h
APM_REAL_MODE_CONNECT 5301h
APM_INTERFACE_DISCONNECT 5304h
APM_SET_POWER_STATE 5307h
APM_RESTORE_DEFAULTS 5309h
APM_GET_PWR_STATUS 530Ah
APM_GET_PWR_MGMT_EVENT 530Bh
APM_GET_DRIVER_VERSION 530Eh

All eventsinitiated by POWER are system level power requests. No specific devices are
supported, and consequently, neither isthe APM_ENABLED state. POWER monitors the BIOS
software interface to the disk, serial ports, keyboard, printer ports and display, aswell asthe
hardware keyboard interrupt, for activity. POWER uses the periodic software Int 1Ch to measure
the time since the last user activity and to poll the APM BIOS for pending events. If no events
occur within the least-time-out val ue specified on the POWER.EXE command line, POWER
generates a power-down request.

POWER also generates a power-down request in response to an application-idle request. In either

case, if no applications reject the power-down request, POWER calls the APM BIOS to set the
appropriate system power state.

Chapter 4, Tutorials 161

Note: POWER only callsthe BIOS to reduce the current power availability, never to increase it.
The BIOS isresponsible for increasing the power availability and for notifying POWER
(by posting an APM event) that the power availability has changed.

If the system power stateisinitially in the ready or full-power state, POWER attemptsto set the
system power state to standby. If the system state is already in the standby state and a time-out
occurs due to no user activity (or if asubsequent application idle event isreceived), POWER
attemptsto further reduce the current power state to the suspend state.

The APM BIOS must notify POWER of any increase in power availability by posting an APM
event. Whenever POWER processes such events, it automatically sets the timer tick count to the
time kept by the CMOS reak-time clock (if oneisavailable). This strategy of directly setting the
system power state is the only method POWER employs to control power consumption. No
CPU_IDLE or CPU_BUSY calls are generated by POWER.

POWER transmits any APM BIOS event code (supported or not) to any APM applications that
have chained into Int 2Fh. DOS applications and device drivers may extend POWER’s
functionality by processing these additional event codes and either controlling the availability of
specific devices directly or generating application-idle signals.

Installation and Usage

POWER can be loaded either at system startup or when the system is running. Once loaded,
POWER remains in memory and active until the system isturned off. POWER can be loaded at
system startup by placing an INSTALL command in the CONFIG.SY Sfile as shown in the
following example.

I NSTALL=C: \ BI N\ PONER. EXE
POWER can also be installed by means of a statement in the AUTOEXEC.BAT file.

Operation of POWER can be configured using the following command line options. The # sign
defines the number of seconds that a device may be inactive before it is powered down.

/CH# Set theinactive time for COMM ports.

/D# Set theinactive time for disks.

/H Display the basic help screen.

IK# Set the inactive time for the keyboard.

IPH# Set the inactive time for printers.

ISH# Set the inactive time for the display.

/ADV:MIN Provide minimum power reduction (most responsive).
/ADV:REG Provide standard power reduction.

/ADV:MAX Provide maximum power reduction (least responsive).
/STD Provide standard power reduction.

/OFF Turn power management off.

162 Chapter 4, Tutorials

The following example shows power being installed at boot time from CONFIG.SYS. The COM
ports are not monitored and the disk inactive timeis set to 25 seconds.

I NSTALL = PONER / CO / D25

Note: To prevent a particular device from being monitored by POWER, enter a zero value for the
inactive time. Thisfeature enables an application to access a device directly without the
possibility of the device being powered-down as the application was about to useit.

Systems Without APM

A system which is not equipped with APM BIOS can still perform its own version of power
management, without using POWER. The only hardware requirement is a battery -backed real -
time clock.

This can be implemented by placing the CPU in a static or halt state when the system isnot in use.
Thisis done by executing a STOP or HLT instruction when requested. When the next interrupt
occurs, system operation resumes. At thistime, the real-time clock isread and the BIOS tick
count set, so that both of these time bases are in sync.

Non Standard Platforms/Pen Based Systems

The Power Management software was written with astandard Palm-Top PC in mind. The power
management software detects system+idle when no keys are being pressed and there is no other
activity in the background.

If aplatform uses a pen-based system without a keyboard, the system appears to not receive user
input because keys are never pressed. Such configurations require a special idle detection.

Note: Special input devices generally require more coordination between Datalight and individual
OEMs. Please contact Datalight with your specific requirements.

Implementing ROM-DOS SuperBoot

Dual-booting a System Using Hidden Files

M ost disk-based computer systems boot up with their primary operating system, such as Windows
95, Windows 98, Windows NT, LINUX, and others for access to the available disk drives and to
establish the system environment. In some systems, it may be beneficial to employ a special boot-
up mode to a different environment and a secondary operating system. A secondary operating
system can be used to run special diagnostic programs that need to be kept hidden from the end-
user. Such diagnostics, accessed by a hot-key combination, may be used by service personnel or
by the end user under the direction of technical support personnel.

The need to run the computer under a secondary operating system or under its primary operating
system, can be met by selectively booting the computer to either of two disk drives/disk partitions
included in the system. The ability to dual-boot the system is provided by a special version of
Datalight's ROM -DOS that includes SuperBoot capability. A dual-boot arrangement may also be

Chapter 4, Tutorials 163

needed when it is necessary to run disk-recovery utilities or applications that are specific to the
respective primary or secondary operating systems.

The remainder of this section describes the procedure for installing ROM -DOS as the secondary
operating system on the system hard disk designated as the boot disk drive.

About the Boot Disk

Implementation of SuperBoot must be accomplished on the hard disk designated as the boot disk
(that is, the first hard disk in the system). The secondary operating system (ROM -DOS) must be
installed prior to the primary operating system and the boot disk drive must be new, or, one that
can be reformatted without regard for the datawhich it contains. If partitions already exist on the
drive, they must be removed prior to implementing the SuperBoot partition if there isinsufficient
free non-partitioned space on the drive to accommodate the new partition. For example, if you
already have an NT partition on your disk, you can still add a SuperBoot partition if there is non-
partitioned space on thefirst hard-drive (BIOS drive 80h). Prior to implementing SuperBoot, the
hard disk must contain alow-level format as normally required before running FDISK, the
partitioning utility included with ROM -DOS.

Implementation Procedure

The following procedure illustrates how to construct a SuperBoot partition and two standard
ROM-DOS partitions on a hard disk. It assumesthat you have installed the ROM-DOS SDK and
are able to produce a standard bootable floppy disk. In addition to the devel opment machine on
which ROM -DOS isinstalled, you will need a second machine with a hard drive on which you can
run FDISK and FORMAT, and also two floppy disks.

This example procedure creates three partitions; one SuperBoot partition and two DOS partitions.
Although two DOS partitions are not required for SuperBoot implementation, the two DOS
partitions demonstrate the change in drive ordering when booting using different SuperBoot
libraries as a starting point. Thisexample only proceeds through the steps using one of the
SuperBoot library options. The procedure can be repeated with other library choices.

1. Prepareastandard ROM-DOS bootable floppy disk.
On your development system, prepare astandard ROM -DOS bootable floppy disk. Copy
the ROM -DOS FDISK and FORMAT utilities onto this floppy disk.

2. Prepare a SuperBoot bootable floppy disk.
This step varies depending on the revision of ROM -DOS you are using.

ROM-D0OS6.22, revision 3.00.1 or earlier:

If you have an existing copy of USER.LIB in theroot of your ROM -DOS directory tree,
renameit to USER.BAK (or other convenient name) before continuing with this
procedure.

Switch to the\DATALGHT\ROMDOS'SUPRBOOQT directory and issue the command:
COPY LASTB.LIB .\USER.LIB

Once the copy is complete, change back to the root of the ROM -DOS directory and run
BUILD, selecting the quick build option (as outlined in ‘ Chapter 4, Building ROM -
DOS'). BUILD will produce a special SuperBoot version of ROM-DOS that can be used

164

Chapter 4, Tutorials

to produce a bootable floppy disk. Format the second floppy disk using the newly
created ROM -DOS.SY Sfile and then copy the ROM-DOS FORMAT utility onto this
bootable SuperBoot floppy disk.

ROM-D0OS 6.22, revision 3.00.2 or later:

Run the BUILD utility (as outlined in ‘ Chapter 4, Building ROM-DOS)).

Enter C in response to the “Do you wish to Quick-Build or Custom-Build ROM -

DOS (Q/C)?" prompt.

Enter Y in response to the “Will ROM -DOS boot from Floppy/Hard disk?’ prompt.

Enter Y in response to the “Would you like to enable SuperBoot support?’ prompt.

Enter L (for Last) in response to the “ Specify the location for the SuperBoot drive

ordering.”

Enter SuperBoot partition ID in response to the “What is the SuperBoot partition ID

(inhex)?" prompt. Notethe ID value you enter; thisvalueis used in the following

step.

Respond to the remaining BUILD session prompts as they pertain to your system.
ROM-DOS 6.22, revision 3.00.2 and later, does not include a SUPRBOOT directory. Pleaserefer
to the release READ.ME file for additional information.

3. Partition the hard drive.
Reboot the test machine from the standard ROM -DOS boot disk. From the DOS
command prompt, issue the following commands:
FDISK 80 /198 /S5 /C

FDISK 80 /B /S15 /C
FDISK 80 /B /C

This example assumes the hard drive has no existing partitions and these commands do not work

if thedriveisaready fully-partitioned. If thisisthe case, use the FDISK menu interface to
remove all of the partitions on the disk before proceeding. These commands create a5MB
SuperBoot partition, a second 15MB partition, and athird partition that includes the remainder of
the disk (or stops at the 2GB partition size limit of DOS). The value for the“I” option must match
the value selected for the SuperBoot ID during the BUILD session. The default value for the
SuperBoot ID is 98h.

4. Reboot from the standard ROM-DOS floppy disk and format the bootable DOS
partition.
Reboot from the standard ROM -DOS boot disk and then issue the following DOS
commands:
FORMAT C. /s
FORVAT D
These commands prepare the second (15M B) partition as a bootabl e standard DOS partition using
the standard version of ROM -DOS and make the third partition a standard non-bootable DOS
partition. The SuperBoot partition will not be visible to the standard ROM -DOS version nor to
other operating systems.

5. Reboot from the SuperBoot floppy disk and format the Super Boot partition.
Reboot the test machine using the SuperBoot version of ROM -DOS constructed in step 2.

Chapter 4, Tutorials 165

The 5SMB SuperBoot partition appears as drive E while the 15MB standard DOS partition (made
bootable in the previous step) isdrive C. The third partition isdrive D. The order in which DOS
lists partitionsis (with this particular version of the SuperBoot kernel):

1. DOS bootable partitions

2. DOS primary non-bootable partitions
3. DOS extended partitions

4. Superboot partisions

If adifferent library from the SUPRBOOT sub-directory is chosen, then the relative order of the
SuperBoot partition may have been different. The implications of sdecting other SUPRBOOT
libraries with which to build ROM -DOS are discussed later. For now, prepare the SuperBoot
partition for use and continue. To complete this step, run FORMAT from the SuperBoot bootable
floppy disk as shown below:

FORMVAT E: /s

6. Reboot and activate the SuperBoot partition.
Remove the SuperBoot floppy disk and reboot the test machine. When the lights on the
keyboard flash, immediately press Alt-F2 to activate the SuperBoot partition code. A
one-second delay in the boot sequenceis provided for pressing the Alt-F2 keys. When
the system has booted to the COMMAND prompt, issue the DIR command to verify that
it has booted from the 5SMB SuperBoot partition, and also note that the default drive is
drive E. View adirectory of drives C and D and notice that their drive order has not
changed and that drive C is still the bootable DOS partition.

While the SuperBoot kernel is active, you can issue the VER command with the /R option to
display the SuperBoot options. Display of the SuperBoot options are not available when booting
from the standard ROM -DOS kernel.

7. Reboot to the standard DOS partition.
Reboot again, but this time allow the boot process to continue without activating the
SuperBoot partition using the Alt-F2 hotkey. When the boot sequence is complete, view
adirectory of drives C and D and verify that their order is preserved. Note that the
SuperBoot partition is no longer visible and that the VER /R command no longer lists the
ROM-DOS SuperBoot options.

SuperBoot Partition Order

As previously mentioned, DOS will list the drives according to their partition type. The order in
which ROM -DOS presents these drives depends on whether you boot from a standard DOS kernel
or a SuperBoot kernel. A standard ROM -DOS kernel will assign drive lettersto partitionsin the
following order:

1. DOS bootable partitions

2. DOS primary non-bootable partitions

3. DOS extended partitions
ROM -DOS provides several optionsin selecting the relative order of a SuperBoot partition in the
list above. These options are:

FIRST — The SuperBoot partition will be assigned a drive |etter before any of the other drive
types (typically drive C).

166

Chapter 4, Tutorials

MIDDLE — The SuperBoot partition will always appear after the first bootable partition
(typically drive D).

LAST — The SuperBoot partition will appear as the last hard drive in the system (asillustrated
in the preceding example).

For each of these drive letter assignments, except First and FirstB, you also have the option of
reading CONFIG.SY Sand AUTOEXEC.BAT (the boot files) from either the SuperBoot drive or
the standard boot drive (typically drive C). SuperBoot library files that force the kernel to read
these files from the SuperBoot drive are given a“B” suffix. Note that the ROM -DOS SuperBoot
kernel is only loaded from the SuperBoot partition when pressing Alt-F2 during the boot process.
The drive from which the boot files are read, once the SuperBoot kernel gets control, depends on
which SuperBoot library was included in the ROM -DOS build. The First and FirstB libraries are
identical and both boot from the first drive letter and read the boot files from the same drive.

The following table summarizes the effects of including the various SuperBoot librariesin the
ROM-DOS build. For simplicity, it is assumed that first available hard disk driveisdrive C,
although ROM -DOS allows for many configuration options that might change the first available
hard disk drive.

Summary of SuperBoot Libraries

SuperBoot .LIB file SuperBoot drive letter Boot files read from drive
FIRST C:

FIRSTB C C

MIDDLE D: C:

MIDDLEB D: D:

LAST Last hard disk drive C

LASTB Last hard disk drive Last hard disk drive

Note: The choices of FIRST, MIDDLE, and LAST are only available with ROM -DOS 6.22,
revision 3.00.1 and earlier. The FIRSTB, MIDDLEB, and LASTB are available with all versions
of ROM -DOS that support the SuperBoot option..

Using Win95 or Win98 as Primary Operating System

One additional step to the process outlined above needs to be taken if Win95/98 isto be used as
the primary partition operating system. After running FDISK on the drive, formatting and placing
the system files on primary and SuperBoot partitions as instructed, you can install Win95/98 onto
the primary partition. Create a partition large enough to accommodate the installation of the
software and provide CD-ROM drivers as necessary for loading the Win95/98 software from a
CD.

When the Win95/98 installation is completed, the SuperBoot partition may no longer be
accessible. To correct this, reboot from the standard ROM -DOS floppy disk prepared in step 1.
Rerun FDISK using the menu method (run FDISK without command line arguments). Select “V”
to view the partitions and verify that the SuperBoot partition is still present. Press Esc to return to
the main FDISK menu, then run the “M” option to re-write the master boot record code. Press Esc

Chapter 4, Tutorials 167

to return to the main FDISK menu, then chose “ Save and Exit.” When the system reboots,
pressAlt-F2 to activate the SuperBoot partition.

Dynamic System Configuration

Introduction

When installing software on a system or configuring a system to accommodate its current
operating environment, it may be beneficial to install only certain software. For example, when
booting (or installing software) from a CD-ROM, it may be desirable to install only those software
components, such as device drivers, required for the particular system instead of loading the
system with unnecessary software. When installing device drivers at boot time, system resources
can be maximized by installing only those drivers required for the installed hardware and omitting
those for which no hardware exists.

How Does Dynamic System Configuration Work?

In a system where the exact hardware configuration is unknown, following procedure is performed
at boot time to determine the need for ,and to load only the required device drivers. This
procedure, which relies on the Dynamic Driver Loader program and the NEWFILE feature of
Datalight’'s ROM -DOS, programmatically determines the need for specific device drivers and
subsequently loads them from the installing media.

1. Runthe Dynamic Driver Loader program. This program detectsthe installed hardware
and writes a configuration file that reflects the detected hardware.

2. Processthe configuration file stored on the RAM disk to install the needed device drivers
from the installation media, such asa CD-ROM.

Note: Because the dynamic configuration process requires the creation of aconfiguration datafile
(performs disk 1/0), awriteable disk must be available in the target system. If no such disk
is present, such as when booting from CD-ROM or read-only memory, atemporary RAM
disk must be created during the configuration process.

Using the Dynamic Driver Loader

The example of dynamic system configuration presented in this document describes a method of
automatically configuring atypical x86-based system. This particular example checks the system
for the presence of extended memory (XMS) and if found, installs two RAM disks above the IMB
boundary. Thisexample used isaworking example because it can be implemented in any system
equipped with extended memory.

Configuration is performed by loading a small program (the Dynamic Driver Loader) during the
processing of CONFIG.SYS. This program examines the system for extended memory and, when
found, creates a pair of RAM disks for use by installed applications. While the following example
loads drivers that address memory as disk drives, the same concept can be used to load driversfor
hardware components other than extended memory.

168 Chapter 4, Tutorials

Examining the Example CONFIG.SYS File

In aROM -DOS system, boot-up includes the processing of the CONFIG.SY Sfilelocated in the
root directory of the default drive, which may be an installation CD-ROM or floppy disk. The
following statement loads the HIMEM extended memory device driver, needed to use extended
memory.

DEVI CE=H MEM SYS

The next statement loads the VDISK.SY S RAM-disk driver. The Dynamic Driver example
requires the use of aRAM disk on which to place the new configuration file. A customized
Dynamic Driver could place the new file onto an alternate read/write drive. A 16KB RAM disk
will be created on conventional memory.

DEVI CE=VDI SK. SYS 16

The next statement in CONFIG.SY S loads the Dynamic Driver Loader program,
DYNDRVR.SYS.

DEVI CE=DYNDRVR. SYS

When loaded, DYNDRVR.SY S examines the target system and detects the hardware components.
DYNDRVR.SY Sthen lists the required device driver for any hardware it detects asa DEVICE=
statement in the file DYNCFG.SY Sfile. Initsdefault form, DYNDRVR.SY S detects extended
memory and writesthe DEVICE=VDISK statementsto DY NCFG.SYS.

NEWFI LE=A: \ DYNCFG. SYS

Thelast statement in this CONFIG.SY Sfile uses the NEWFILE command to access the
DEVICE= statements specified by the DY NDRVR.SY S program and stored in the DYNCFG.SY S
fileon thedisk drive. Inthisexample, the DEVICE= statementsin DY NCFG.SY S establish apair
of RAM disksif extended memory is available in the system.

For the example DY NDRVR.SY S driver to work, the NEWFIL E= statement must be placed in the
CONFIG.SY Sfile exactly as shown above. The statement must be uppercase. The referenceto
the A driveisadjusted by DY NDRVR.SY Sto reflect the correct RAM driver letter.

About the Dynamic Driver Loader

The Dynamic Driver Loader is provided in C source code and can be adjusted to accommodate a
wide range of hardware. When run (during the processing of CONFIG.SYS) inits default form,
DYNDRVR.SY S detects extended memory and, if present, creates apair of RAM disks. If
extended memory is not present in the target system, DY NDRVR.SY S reports an error and
terminates. The basic stepstaken by DYNDRVR.SY'S, as provided, include:

Examines the target hardware for the existence of extended memory (XMS).
If XMS isfound, determines which drive to write the DY NCFG.SY Sfile.
Updates the NEWFILE command in CONFIG.SY Sto point to the DY NCFG.SY Sfile.

Creates the DY NCFG.SY Sfile with the DEVICE= statements needed establish the two
RAM disks.

The source code for DYNDRVR.SY Sisatemplate that can be altered and added to as needed to
suit aparticular target system. The source code files are located in the MEMDISK subdirectory.
Thisdriver is able to any number and type of hardware components and then insert the appropriate
DEVICE-= statement(s) into DY NCFG.SYS. When DY NDRVR.SY S terminates, processing of

Chapter 4, Tutorials 169

CONFIG.SY S continues with the NEWFILE command, described below. Refer to ‘Using a
Custom Memory Disk’ and the MAKEFILE inthe MEMDISK directory for instructions on
compiling the source code. To create the driver using the supplied MAKEFILE, use the
command:

Make dyndrvr. sys
To manually compile the code:

TASM /z /nmx /zd /1 /DROVDI SK=1 nendi sk. asm
BCC —¢c —-w —-O —Z —| dyndrvr.c
TLINK /s /m/c /| menmdi sk+dyndrvr, dyndrvr. sys,,nenutil.lib/m

About Config.sys Processing and the NEWFILE Command

The CONFIG.SY Sfileisloaded and interpreted by the ROM -DOS kernel. If the ROM -DOS boot
diagnostics are enabled, the first portion of this processing happens after diagnostic "6".

For several reasonsit is not practical to process CONFIG.SY Sin the order that it appears. Among
these are:

Menu processing
The ability to load DOS and certain device drivers into High memory
A NEWFILE command referring to an existing drive

The aternative is a multiple-pass system, which is the way MS DOS also chose to handle
CONFIG.SY Sprocessing. Some of thisisdocumented in "DOS Internals' by Geoff Chappell (pp.
145-155).

Note also that F5, F8, and the SHIFT key affect processing at thislevel. With F8 and step-by-step
confirmation, it is possible to see what we are calling PASS 2, PASS 3, and PASS 4 through the
CONFIG.SYS.

INPASS 1, CONFIG.SY Sis scanned for menus and blocks. If MENUs (and SUBMENUS) are
present, they are displayed to the user asindicated. This also means commands related to menus
are processed at thistime, including MENUDEFAULT, MENUCOLOR, and NUMLOCK.

All of the menu processing resultsin ablock being selected by the user. If thereisno menu
processing, the block field is essentially blank. In PASS 2, 3, and 4, the only CONFIG.SY S
commands that will be processed are located:

Before any block definitionsin thefile
Within ablock whose name matches the sel ected block
Within ablock whose name is[COMMON]
Within any block that is specified after an INCLUDE=
In order to ease future processing and handle INCLUDE variances, ROM -DOS reprocesses these

commands, in order, to anew buffer. Itisat thistimethat NEWFILE commands will insert the
newfile into this buffer.

Hereis asimple example that demonstrates this behavior:

170

Chapter 4, Tutorials

A\ CONFI G SYS C.\ CONFI GR2. SYS

DEVI CE=B

NEWFI LE=C; \ CONFI G2. SYS
DEVI CE=C

[TVW]

DEVI CE=D

[COMVON]

DEVI CE=E

| NCLUDE=ONE

DEVI CE=F

With this example, the devices will load in this order:

A (firstinfile, outside any blocks)
E (COMMON isthefirst block processed)
B (the ONE block isincluded, and processed next)
Z (bring in the newfile)
(note- ROM -DOS does NOT process the DEVICE=C)
F (back to the COMMON block)

There are other issues related to potential looping INCLUDE= blocks, but those are not within the
scope of this document.

Next CONFIG.SY S Processing then continues with PASS 2. The following commands are
understood:

DOS

STACKS
ROM -DOS then allocates stacks and high memory as appropriate, and continues with PASS 3.
The following commands are understood:

DEVICE

DEVICEHIGH

COUNTRY

BREAK

BUFFERS

FCBS

FILES

LASTDRIVE

NUMLOCK

SHELL

SET

SEARCHES

Chapter 4, Tutorials 171

The specified buffers, files, and FCBs are all allocated into high or low memory, and other
initializations take place. If boot diagnostics are enabled, ROM -DOS emits adiagnostic " 7".
Finally, PASS 4 of CONFIG.SY S processing happens, and the following commands are
understood:

INSTALL
INSTALLHIGH

The memory used by CONFIG.SY S and the new buffer are discarded, and the memory used by
the processing code and warning messages is also discarded. |f boot diagnostics are enabled,
ROM-DOS emitsan "8".

At thistime, final processing is done and eventually the AUTOEXEC.BAT fileis processed.

The NEWFILE command was originally handled during PASS 3. Thiswas useful to our
customers because they could load adevice driver which created avirtual "drive" then, using
NEWFILE, pass control a configuration file located on that drive.

In order to load anew CONFIG.SY Sfile from avirtual drive and enable DOS=HIGH commands
from within the new CONFIG.SY S, the NEWFILE command was extended. The presence of an
optional parameter will tell the ROM -DOS kernel to load this device driver before trying to
processthisNEWFILE. Anexample:

NEWFI LE=C: \ CONFI Q2. SYS, RONMDRI VE. SYS C000

The only PASS2 command allowed in this variety of NEWFILE isthe DOS= command, and even
that is now being processed during PASS3. Any STACKS lines and options will not be
processed, and must be in the base CONFIG.SY S on the boot media.

The original NEWFILE command would report an error if the target file did not exist, then
continue processing in the samefile. Because we will not know if the file exists until later, this
new style NEWFILE command will set aflag so that no further commands will be processed from
the current CONFIG.SY Sfile, regardless.

SOCKETS Programming Tutorial

Sample Programs

Compiler Notes
The attached examples are designed for use with Borland 5.2 compiler. A makefile
(example.mak) has been provided for reference. These are real mode examples only, compiled as
a 16-bit DOS application with small memory model. The module “compiler.h” can be ported for
use with other compilers, currently it supports various Microsoft and Borland compilers. To use
the makefile with BC 5.2 simply type:

Make —fexample.mak

Included Files

CHAT.C
CHAT.PT

172 Chapter 4, Tutorials

MCCHAT.C
UDPCHAT.C
UDPCHAT.PT
CHAT.MAK
CAPI.C
CAPI.H
COMPILER.H
_CAPI.C

CHAT

Overview

A TCP based CHAT application. A server is started on the defined CHAT port. All connections
made to this server, as well as those made by the local user to other servers, areputin alist.
Whatever datathe local user entersis sent to all the connectionsin thislist (When the user hits
Enter). Any datareceived from any of these listed connections s displayed on the screen.

This program and its' functions are single-threaded and non-reentrant and should be used as such.

Protocol

A CHAT server accepts TCP connections from several clients on port 5000. Once connected, a
client may send lines of text to the server. Those lines are then sent out to all connected clients.
The net result isthat all connected users can see the typed lines of text from all other users.

Implementation

For the sake of simplicity, thisimplementation is not designed for portability. Sincethe
Compatible API isonly available for DOSbased stacks, the code relies on certain DOS features
like keyboard hardware. Also, several basic functions are simply presented rather than explained.

Programming Style and Naming Conventions

Datalight strongly recommends the use of the Hungarian naming convention. The codein this
tutorial relieson that convention. For those unfamiliar, Datalight recommends several reads of the
Microsoft Press book, “Writing Solid Code” by Steve Maguire. Here are afew of the prefixes and
abrief explanation:

i integer

sz string, terminated by zero
rg range, an array of elements
c character

p pointer

CAPI Functions Used

ReleaseSocket
iNetErrNo
WriteSocket
ReadSocket
GetPeerAddress
ListenSocket

Chapter 4, Tutorials 173

SetSocketOption
GetSocket
ConnectSocket
ResolveName

Includes and Defines

These includes and defines are needed by later code pieces.

#i ncl ude <stdarg. h>

#i ncl ude <stdi 0. h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

#i ncl ude <coni 0. h>

#i ncl ude <process. h>
#i ncl ude “conpiler.h”
#i ncl ude "capi . h"

#i ncl ude " CHAT. pt"

#defi ne CHAT_PORT 5000
#define MAX_CONS 30
#defi ne BUF_SI ZE 200

static int rgi Socks[MAX_CONS]; /1 all the sockets (passive and active)
static char rgszNames[MAX_CONS] [80]; // Names associ ated with connections
static NET_ADDR sNet Addr; /1 for general use

static char rgcKeyBuf [BUF_SI ZE] ; /1 key input buffer

static int iKeyCount = O; /'l nunber of characters in above buffer

Utility Functions

The following section of code shows three useful utility functions. Brief comments before each
function should provide explanations.

/*
Create a hunan understandabl e string froma SOCKETS error code.
Ar gunent :
ukrr Code - The SOCKETS error code.
Ret ur ns:
A pointer to the (static) string representation of the error.
*/

char *CetErrorString(unsi gned uErrCode)

static char rgcUnk[30];
static char *rgszErrs[] =

"NoErr",

"l nUse",

"DCSErr*",

"NoMent',

" Not Net conn",
"111egal O",

" BadPkt ",

"NoHost ",

" Cant Qpen",

"Net Unr eachabl e",
" Host Unr eachabl e",
" Port Unr eachabl e",
" Port Unr eachabl e",

174 Chapter 4, Tutorials

"TimeQut",

" Host Unknown" ,
"NoServers",
"ServerErr",

" BadFor mat ",
"BadArg",
"ECF",

"Reset",

"Woul dBl ock",
" UnBound",
"NoDesc",
"BadSysCal | ",
" Cant Broadcast ",
" Not Est ab",
"ReEntry",

b

i f (uErrCode == ERR _API _NOT_LQADED)
return "Sockets not | oaded";

if ((uErrCode & Oxff) > ERR_RE ENTRY)

sprintf(rgcUnk, "Unknown error Ox%®4X', ukrr Code);
return rgclnk;

}
return rgszErrs[uErrCode & Oxff];

}
/*
Show data on screen. For now we just use vprintf to print the data and
reprint any stuff that was being edited. Accepts variable nunber of
paraneters, exactly like printf, and process themusing the va_list/va_args
net hod.
Argunent s:
pFormat and ellipsis - Exactly the same as for printf().
*/
void Aprintf (char *pFormat, ...)
{
va_list pArgs;
i f (i KeyCount) /] data been edited, start on newine
printf("\n");
va_start(pArgs, pFormat);
vprintf(pFormat, pArgs);
va_end(pArgs);
/1 print the old edited stuff (if any)
if (iKeyCount)
{
rgcKeyBuf [i KeyCount] = 0;
printf("%", rgcKeyBuf);
}
}
/*

Create a string representation of the | P address and port, in the form
a.b.c.d:port, eg 196.10.180.3:1400. Max length is 22 bytes.
Argunent s:

psAddr - pointer to NET_ADDR structure containing address of host.
Ret ur ns:

Chapter 4, Tutorials 175

Pointer to (static) array containing null-term nated string.
*/
static char *WiteName(NET_ADDR *psAddr)

{
static char rgcNane[22];

sprintf(rgcNane, "% %. %. %u: %",
((BYTE *) &psAddr- >dwRenot eHost) [0],
((BYTE *) &psAddr- >dwRenot eHost) [1],
((BYTE *) &psAddr- >dwRenot eHost) [2] ,
((BYTE *) &psAddr- >dwRenot eHost) [3],
psAddr - >wRenot ePor t

)

return rgcNane;

Array Maintenance Functions

The uses of these functions are not quite as obvious as the last set. They operate on an array of
socket handles. If an array element is zero, then it isnot allocated. Otherwise, it isan open socket
that may have data pending for send or receive. One useful function isto find the first unallocated
entry so that it can be allocated. Another would be to find the next allocated entry to test its data-
pending state. The following functionsimplement all of the code needed to perform these

routines.
/*
CGets the first not-assigned entry in the rgi Socks array.
Ret ur ns:
The first nonzero index or -1 if all in use.
*/
static int GetFirstQuen(void)
{
int iRet = 0;

while (i Ret < MAX_OONS)

if (rgi Socks[iRet] == 0)

return iRet;
i Ret ++;
}
return -1,
}
/*
The next two functions inplenments an enunerator. To initialize (or reset),
call resetEnum Successive calls to getNextlndex returns all the used
i ndexes. Wien there is no nore used indexes, -1 is returned
*/
static int iPrev = -1; [l privately used by next two functions
static void Reset Enun(voi d)
{
iPrev = -1;
}
/*
Gets the next not O entry in the rgi Socks table.
Ret ur ns:
The index of the next entry or -1 if no nore.
*/

static int GetNextlndex(void)
{

176 Chapter 4, Tutorials

while (++i Prev < MAX_CONS)

if (rgiSocks[iPrev] != 0)
return i Prev;

}

return -1;

Connection Functions

These functions are simple wrappers that isolate common, redundant code for easier debugging
and use. They are so common that they can be copied verbatim into your application if you like.

/ *
(pen a TCP connection to the specified host and the default CHAT port.
Argunent :
pHost Name - A pointer to the nane of the host we want to connect to
Ret ur ns:
A descriptor of the newy created socket.
*/
int Connect To(char* pcHost Nane)
{

int i Sock; [/ descri ptor
nmenset (&Net Addr, 0, sizeof (NET_ADDR));
sNet Addr . wRenot ePort = CHAT_PORT;

/1 execute several commands and test for error at each step
i f ((sNetAddr.dwRenot eHost = Resol veNane(pcHost Nane, 0, 0)) == 0)

Aprintf("Error on ResolveNarme: %\n", GetErrorString(SocketsErrNo));
e}el se if ((iSock = GetSocket()) < 0)

Aprintf("Error on GetSocket(): %\n", GetErrorString(SocketsErrNo));
gzl se if (SetSocket Option(iSock, 0, NET_OPT_NON BLOCKING 1, 1) < 0)

Aprintf("Error on SetSocketOption(): %\n",
Get Error String(Socket sErrNo));

el se if (Connect Socket (i Sock, STREAM &sNetAddr) < 0)

Aprintf("Error on Connect Socket: %\n", GetErrorString(SocketsErNo));
el se
{

Aprintf("Trying to connect to % (%) \n", pcHost Nane,

Wit eName(&sNet Addr));
return i Sock;

}
Aprintf("Error on connect to % - no con\n", pcHostNare);
return O;

}

/*
Start a TCP server on specified port. (Returns imredi ately)
Argunent :

i Port - The TCP port nunber to |isten on.

Chapter 4, Tutorials 177

*/

Ret urns:

A descriptor of the server socket, or O if an error occured.

int StartListen(int iPort)

{

int iSock;

nenset (&Net Addr, 0, sizeof (NET_ADDR));
sNet Addr . wLocal Port = i Port;

if ((iSock = GetSocket()) < 0)
{

Aprintf("Error on serv GetSocket(): %\n",
CGet Error String(Socket sErrNo));

}

el se if (SetSocket Option(iSock, 0, NET_OPT_NON BLOCKING 1, 1) < 0)
Aprintf("Error on serv setQpt(): %\n", GetErrorString(SocketsErrNo));

else if (ListenSocket (i Sock, STREAM &sNetAddr) < 0)

Aprintf("Error on serv net_listen: 9%\n",
GetError String(Socket sErrNo));

el se
return i Sock;

return O;

CHAT Code Loop

Thefollowing isthe main code loop for the CHAT program. It relieson all the functions above,
and builds on top of them using a common socket-polling methodology.

/*
Loop and | ook for both user input or network input.
*/

voi d mai n(voi d)

{

/1 listening socket, copied to rgi Socks once connection is nade
i nt iListenSock;

/'l general variables
char rgcBuf [BUF_SI ZE] ;
int ilndex, ilLength;
char cCh;

/] clear all client sockets
for (ilndex = 0; ilndex < MAX_CONS; ilndex++)
rgi Socks[ilndex] = 0;

/1l start the server
i Li stenSock = StartListen(CHAT_PORT) ;

/1 give a visual cue for users
Aprintf("Press Alt-H for help\n");

/1 1oop forever, |ooking for network/keyboard input
while (1)

178

Chapter 4, Tutorials

/1l server part - see if new connection was opened
i Lengt h = ReadSocket (i Li stenSock, 0, 0, 0, 0);
if (iLength == 0 || SocketsErrNo == ERR WOULD BLOCK)

/1l client is connected, allocate array entry
if ((ilndex = GetFirstOpen()) !'= -1)
{
// record this as a client connection
rgi Socks[ilndex] = ilListenSock;

/1 show the connection
Cet Peer Addr ess(i Li st enSock, &sNet Addr);

sprintf(rgszNames[ilndex], "%", WiteNane(&NetAddr));
Aprintf("Connection made by %\n", rgszNanes[ilndex]);

/1 hello the new client

i Length = WiteSocket (rgi Socks[i | ndex],
"(server)Hello!'", 14,

if (iLength < 0)

Aprintf("Error on hello: %\n",
Get Error Stri ng(Socket sErrNo));

}
}
el se
/1 no free slots avail able
Rel easeSocket (i Li st enSock) ;
}

/1 start another server socket
i Li stenSock = StartListen(CHAT_PORT);

}
else if (SocketsErrNo != ERR NOT_ESTAB)

{
/] After a nornal read, NOT_ESTAB is the
/1 only valid error code. Qherw se, a
/1l serious error, tell the user and exit
Aprintf("Error on server: %. Exiting\n",

Get Error String(Socket sErrNo));

goto exit;

}

/1l client part — scan for data ready to recieve

Reset Enunt() ;

while ((ilndex = GetNextlndex()) !'=-1)

{

/1 any data on this socket?

0);

i Lengt h = ReadSocket (rgi Socks[ilndex], rgcBuf, BUF_SIZE, 0, 0);

if (iLength <= 0)

if (SocketsErrNo == ERR WOULD BLOCK || SocketsErrNo ==

ERR_NOT_ESTAB)
/1 normal socket, nothing to do

conti nue;

}
if (iLength == 0 && SocketsErrNo == 0)
{

/1 client went away

Chapter 4, Tutorials 179

Aprintf("Peer (%) has cl osed connection\n",
rgszNanes[i | ndex]);

}
el se
/1l error on the line
Aprintf("Error on ReadSocket from%: % - closing\n",
rgszNanes[i | ndex], GetErrorString(SocketsErrNo));
}

[/l dead client, free socket
Rel easeSocket (rgi Socks[i | ndex]);
rgi Socks[ilndex] = 0;

el se

{ . .
// data received fromclient
/] force string termnation
rgcBuf[i Length] = 0;

/1 show the node and string
Aprintf("%: 9%\n", rgszNanes[ilndex], rgcBuf);

}
}
/1 local keyboard, were any keys hit?
if (kbhit())

/1 yes. which ASClI| val ue?
switch(cCh = getche())

/1 NULL - > extended key.

case O:
printf("\n");
switch (cCh = getch())
{

/1 unexpected val ue?

defaul t:

printf("Undefined function key: %\n", cCh);
/] fall through

/Il Alt+H - Help

case 35:

printf("At-C d ose connection\ n"
"At-N New connecti on\ n"
"Alt-H Hel p\ n"
"At-L Li st connecti ons\ n"
"Alt-X eXit\n");

br eak;

[l At+X - Exit

case 45:

goto exit;

/1 Alt+N — Connect as client

case 49:

/1 make a new connection

if ((ilndex = GetFirstOpen()) !'=-1)

/1 get destination host
printf("Enter destination:");

180 Chapter 4, Tutorials

get s(rgcBuf);

/1 attenpt connection
rgi Socks[ilndex] = Connect To(rgcBuf);

/1 if success, copy the nane
if ((rgiSocks[ilndex]) != 0)
{

strcpy(rgszNames[ilndex], rgcBuf);
}

el se

{
}

br eak;

printf("Max nunber of connections in use\n");

// Alt+L — List connections

case 38:

printf("List of all connections\n");
Reset Enun() ;

whi | e((i I ndex=Cet Next I ndex()) != -1)

printf("Connection #% descriptor: % nane % \n",
il ndex, rgi Socks[ilndex], rgszNanes[ilndex]);

}
printf("List end\n");
br eak;

/1 Alt+C — dose a connection

case 46:

printf("Enter connection to close:");
i lndex = atoi(gets(rgcBuf));

if (ilndex <0 || ilndex > MAX_CONS)

printf("QJT of range: %\ n", ilndex);
else if (rgi Socks[ilndex])
{

Rel easeSocket (rgi Socks[i | ndex]);

rgi Socks[i I ndex] = O;
printf("d osed %\n", rgszNames[ilndex]);

el se
printf("Connection % not open\n", ilndex);
br eak;
}
/1 just for |ooks
Aprintf("");
br eak;

/1 normal key
defaul t:
if (i KeyCount < BUF_SI ZE)

/1 we have room store it
rgcKeyBuf [i KeyCount ++] = cCh;
br eak;

Chapter 4, Tutorials 181

/1l buffer full, force send now
/1 fall through

/Il enter — send buffer now
case '\r':
printf ("\n");
if (iKeyCount == 0)
br eak;

// wite data to all connections

Reset Enun() ;
while ((ilndex = GetNextlndex()) !=-1)
{

iLength = WiteSocket(rgi Socks[ilndex], rgcKeyBuf,
i KeyCount, 0);

if (iLength < 0)

{

/1 wite failed!

Aprintf("Error on NetWite from% %l bytes: % —
closing connection\n", ilndex, iKeyCount,

Get Error String(Socket sErrNo));

Rel easeSocket (rgi Socks[i | ndex]);

rgi Socks[il ndex] = 0;

}
}
/1 forget everything we just wote
i KeyCount = O;
br eak;
}
}
}
}
/1 done running!
exit:

/1l release all sockets

Reset Enun() ;

while ((ilndex = GetNextlndex()) != -1)
Rel easeSocket (rgi Socks[i | ndex]);

Rel easeSocket (i Li st enSock) ;

UDPCHAT
Please review the differences between atcp (stream) session and a udp session. When designing
an application to use a udp session we eliminate many connection issues by simply not caring if
the recipient hasin fact received the packets being sent.

'CHAT' meansto to talk and to listen. When using UDP, it means that for the
talk size we just send a broadcast message on the lan and for the listen side
we start aUDP server.

This program and its functions are non-reentrant.

182

Chapter 4, Tutorials

CAPI Calls Used

iNetErrNo
ListenSocket
SetSocketOption
GetSocket
ConnectSocket
WriteSocket
ReleaseSocket
GetPeerAddress
ReadSocket

Includes and Defines

#i ncl ude <stdi o. h>

#i ncl ude <stdarg. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni 0. h>

#i ncl ude <process. h>
#i ncl ude “conpiler.h”
#i ncl ude "capi . h"

#i ncl ude "udpCHAT. pt"

#def i ne CHAT_PORT 5000
#def i ne BUF_SI ZE 200

/ *

It is not necessary to define NAME_LEN or MAX CONS as we did with a stream
connection. W also do not need the static declarations that go along with

MAX_CONS, rgi Socks and rgszNanes

*/

static char rgcKeyBuf[BUF_SI ZE] ;

static int i KeyCount =0
stati c NET_ADDR sNet Addr;

Utility Functions

/] for editing
/1 nunber of characters in keybuf

No changes are necessary within the “utility” functions between CHAT and udpCHAT. Theerror

handling, print to screen, and address resol ution are the same.

/ *

Creates a human understandabl e string froma SOCKETS error code

A pointer to the (static) string representation of the error

Argunent :
uErr Code - The SOCKETS error code
Ret ur ns:
*/
char *Err(unsigned uErrCode)
{

static char rgcUnk[30];
static char *rgszErrs[]
{

"NoErr",

"l nUse",

Chapter 4, Tutorials

183

/ *

"DOSErr",
"NoMent',
" Not Net conn",
"111egal Op",
" BadPkt ",
"NoHost ",
" Cant Qpen",
" Net Unr eachabl e",
"Host Unr eachabl e",
" Pr ot Unr eachabl e",
" Port Unr eachabl e",
"Ti meQut ",
" Host Unknown" ,
"NoServers",
"ServerErr",
" BadFor mat ",
" BadAr g",
"ECF",
"Reset",
"Woul dBl ock",
" UnBound",
"NoDesc",
"BadSysCal | ",
" Cant Br oadcast ",
" Not Est ab",
"ReEntry",

b

if (uErrCode == ERR APl _NOT_LQADED)

return "Sockets APl not | oaded";

if ((uErrCode & Oxff) > ERR RE_ENTRY)

sprintf(rgcUnk, "Unknown error Ox%®4X', uErr Code);

return rgcunk;

}
return rgszErrs[uErrCode & Oxff];

Show data on screen.

For now we just use vprintf to print the data and reprint any thing being

edi ted.
Argunent s:
Format and ecli pse -
*/
void Aprintf (char *pFornat,

va_l i st pArgs;

Exactly the same as for prinf().

)

// data been edited, start on newine

if (iKeyCount)
printf("\n");

va_start (pArgs, pFornat)
vprintf(pFormat, pArgs);
va_end(pArgs);

1

/] print the old edited stuff (if any)

if (iKeyCount)
{

rgcKeyBuf [i KeyCount] = 0;

184

Chapter 4, Tutorials

printf("%", rgcKeyBuf);

}
}
/*
Create a string representation of the I P address and port, in the form
a.b.c.d:port, eg 196.10.180.3:1400. Max length is 22 bytes.
Argunent s:
psAddr - pointer to NET_ADDR structure containing address of host.
Ret ur ns:
Pointer to (static) array containing null-termnated string.
*/

static char *WiteName(NET_ADDR *psAddr)
static char rgcName[22];

sprintf(rgcName, "% %. %u. %u: %",
((BYTE *) &psAddr - >dwRenot eHost) [0],
((BYTE *) &sAddr - >dwRenot eHost) [1] ,
((BYTE *) &sAddr - >dwRenot eHost) [2],
((BYTE *) &sAddr - >dwRenot eHost) [3],
psAddr - >wRenot ePor t

)

return rgcNamne;

}
Array Maintenance Functions

Removed in UDP CHAT.

Connection Functions

/*
Sits in a loop and check for two things:
1. If any data was received fromthe network
If data was received, it is displayed on screen
2. |If the user has entered any data
If the character entered was a newine, the previously entered data is
send, else the character is stored in a buffer.

*/
voi d nai n(voi d)
{
char rgcM/NanmeBuf [NAME LEN]; // buffer containing ny (arbritary) nane
char *pMNaneg; /1l pointer to it
int i Maxl nput; /1 max no of bytes before we nmust send (to
/1 keep alll in buffer)
char rgcBuf [BUF_SI ZE] ; /1 general buffer, used for sending and
11 receiving
int i RevSock; /1 socket for receiving packets
int i SendSock; /'l socket for sending packets
int ilLength; /1 Length of string read or witten
char cCh; /1 Character read
char cMorel nfo; /1 Whether or not to display additional
/1 i nformati on

printf("Sockets UDP CHAT client\n");
printf("Copyright (C 1999 Datalight, Inc.\nAll R ghts Reserved\n\n");

/] get user name and set variabl es accordingly
printf("Enter your nanme (send with all your messages):");

Chapter 4, Tutorials 185

rgcM/NaneBuf [0] = NAME LEN - 2;
pM/Nanme = cget s(rgcM/NaneBuf) ;
i Maxl nput = BUF_SI ZE - rgcM/NaneBuf[1] - 10;

/1 get nore info option

printf("\nDo you want to see the ip addresses of senders? [Y/N");
rgcBuf[0] = 2;

cget s(rgcBuf);

cMrelnfo = (rgcBuf[2] =="'Y 2?2 1: 0);

printf("\nPress Alt-X to exit\n");

// start to listen for datagrans
i RevSock = Sart Li st en(CHAT_PORT) ;
i SendSock = Getd i ent Sock();
if (iRcvSock == 0 || iSendSock == 0)
return;
/1 tell the world | amon the air
iLength = sprintf(rgcBuf, "% canme on the air", pM/Nane);
if (WiteSocket (i SendSock, rgcBuf, ilLength, NET_FLG BROADCAST) < 0)
/1l error
Aprintf("Error on Sending %l bytes: 9%\n",iLength, Err(iNetErrNo));

while (1)

{
/1 server part - see if we received data
i Lengt h = ReadSocket (i RevSock, rgcBuf, BUF_SIZE, 0, 0);
if (iNetErrNo !'= 0 &% i NetErrNo ! = ERR WOULD_BLOCK)

Aprintf("Error on Netread: %\ n", Err(iNetErrNo));

if (iLength > 0)
{

rgcBuf [i Length] = O;

// no color now | = sNetAddr.dwRenoteHost & Oxff;
/1 some color identifing host

if (cMrelnfo)//give the senders ip address as wel |

{
Get Peer Addr ess(i RcvSock, &sNet Addr) ;
Aprintf("% (from%)\n", rgcBuf,
Wit eNanme(&sNet Addr));
}
el se

Aprintf("%\n");
}
if (kbhit())
{
switch(cCh = getche())

/* function key */

case 0:
if (getch() == 45)//At-X exit
{
Rel easeSocket (i RcvSock) ;
Rel easeSocket (i SendSock) ;
return;
}
br eak;
defaul t:

if (iKeyCount < iMaxlnput)

rgcKeyBuf [i KeyCount ++] = cCh;
br eak;

186 Chapter 4, Tutorials

/1l fall thru
case '\r':
/] case '\n":
putch('\n");
if (iKeyCount == 0) /1 nothing to do
br eak;
/1 everyone should identify hinself
rgcKeyBuf [i KeyCount] = 0;
iLength = sprintf(rgcBuf, "% :9%", pM/Nane,
rgcKeyBuf) ;
/] broadcast data
if (WiteSocket (i SendSock, rgcBuf, iLength,
NET_FLG BRQADCAST) < 0)//error
Aprintf("Error on NetWite %l bytes: %\n",
i Length, Err(iNetErrNo));

i KeyCount = O;
br eak;
}
}
}
}
/*
Get a socket descriptor that can be used to send UDP packets
Ret ur ns:
A descriptor of the socket, or O if an error occured. (Returns
i medi at el y)
*/

static int GetdientSock(void)
int iSock;

nmenset (&sNet Addr, 0, sizeof (NET_ADDR));
sNet Addr . wRenot ePort = CHAT_PORT;

if ((iSock = GetSocket()) < 0)
Aprintf("Error on GetSocket(): %\n",Err(iNetErrNo));

else if (SetSocketOQption(iSock, 0, NET_OPT_NON BLOCKING 1, 1) < 0)
Aprintf("Error on setQot(): %\n",Err(i NetErrNo));

el se if (Connect Socket (i Sock, DATA GRAM &sNet Addr) < 0)
Aprintf("Error on net_connect: %\n",Err(iNetErrNo));

el se

{
Aprintf("dient sock successfully createdin");
return i Sock;

}

return O;
}
/*
Start a UDP server on specified port.
Ret ur ns:
A descriptor of the server socket, or O if an error occured.
(Returns i medi ately)
*/
int StartListen(int iPort)

int i ServSock; //the new socket

menset (& Net Addr, 0, sizeof (NET_ADDR));
sNet Addr . wLocal Port =i Port;

Chapter 4, Tutorials 187

if ((iServSock = Get Socket()) < 0)
Aprintf("Error on serv GetSocket(): %\n",Err(iNetErrNo));

else if (SetSocketOption(iServSock, 0, NET_OPT_NON BLOCKING 1, 1) < 0)
Aprintf("Error on serv setQt(): %\n", Err(iNetErrNo))

el se if (ListenSocket (i ServSock, DATA GRAM &sNet Addr) < 0)
Aprintf("Error on serv net_listen: 9%\n", Err(i NetErrNo));

el se

{ .
Aprintf("Server sock successfully createdin");
return i ServSock

}

return O

}
MCCHAT

A program that enables usersto CHAT using multicast udp.

'CHAT' meansto to talk and to listen. When using UDP, it means that for the talk side we just send a
multicast message on the LAN and for the listen side
we receive on the same UDP socket.

This program and its functions are non-reentrant.

The changes between udpCHAT and MCCHAT are minimal. We add the group CAPI calls,
JoinGroup() and L eaveGroup()and remove the ListenSocket()and GetPerrAddress() calls. We add an
include for “ctype.h”.

CAPI Calls Used

iNetErrNo
WriteSocket
JoinGroup
LeaveGroup
ReleaseSocket
ReadSocket
ConnectSocket
SetSocketOption
GetSocket
ResolveName

Includes and Defines

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>
#i ncl ude <ctype. h>

188

Chapter 4, Tutorials

#i ncl ude <process. h>
#i ncl ude “conpiler.h”
#i ncl ude "capi . h"

#i ncl ude " udpCHAT. pt"

#def i ne CHAT_PORT 5000
#defi ne BUF_SIZE 200

#define NAME_LEN 20 /I ny name

static char rgcKeyBuf [BUF_SI ZE] ; //for editing

static int iKeyCount = O; /I nunber of characters in keybuf
stati c NET_ADDR sNet Addr; /Il general use

Utility Functions

/ *
Oreate a human understandabl e string froma SOCKETS error code
Argunent :
uErr Code - The SOCKETS error code
Ret ur ns:

A pointer to the (static) string representation of the error

*/
char *Err(unsi gned uErr Code)

static char rgcUnk[30];
static char *rgszErrs[] =
{
"NoEr",
"I nUse",
"DOSErr",
"NoMent',
" Not Net conn",
"I'll egal Op",
" BadPkt ",
"NoHost ",
" Cant Cpen",
" Net Unr eachabl e",
" Host Unr eachabl e",
" Pr ot Unr eachabl e",
" Port Unr eachabl e",
"TimeQut ",
" Host Unknown" ,
"NoServers",
"ServerErr",
"BadFor mat ",
"BadArg",
"ECF",
"Reset",
"Woul dBl ock",
" UnBound",
"NoDesc",
"BadSysCal | ",
" Cant Br oadcast ",
" Not Est ab",
"ReEntry",

b

if (uErrCode == ERR_API _NOT_LQADED)
return "Sockets APl not | oaded";
if ((uErrCode & Oxff) > ERR _RE_ENTRY)

Chapter 4, Tutorials 189

sprintf(rgcunk, "Unknown error Ox%®4X', ukrr Code);
return rgcunk;

}
return rgszErrs[uErrCode & Oxff];

/*
Show data on screen.
For now we just use vprintf to print the data and reprint any stuff that
was being edited.
Argunent s:
Format and eclipse - Exactly the same as for prinf().
*/
void Aprintf (char *pFormat, ...)

va_l i st pArgs;

if (iKeyCount) /1 data been edited, start on new ine
printf("\n");

va_start (pArgs, pFormat);
vprintf(pFormat, pArgs);
va_end(pArgs);

/1 print the old edited stuff (if any)
if (iKeyCount)
{

rgcKeyBuf [i KeyCount] = 0;
printf("%", rgcKeyBuf);

}

/*
Create a string representation of the I P address and port, in the form
a.b.c.d:port, eg 196.10.180. 3: 1400.
Max length is 22 bytes.
Argunent s:
psAddr - pointer to NET_ADDR structure containing address of host.
Ret ur ns:
Pointer to (static) array containing null-termnated string.
*/
static char *WiteName(NET_ADDR *psAddr)

{
static char rgcName[22];

sprintf(rgcName, "%. %. %. %u: %",
((BYTE *) &psAddr - >dwRenot eHost) [0],
((BYTE *) &sAddr - >dwRenot eHost) [1] ,
((BYTE *) &psAddr - >dwRenot eHost) [2],
((BYTE *) &sAddr - >dwRenot eHost) [3],
psAddr - >wRenot ePor t

)

return rgcNamne;

}

Connection Functions
/*
Sit in a loop and check for two things:
1. If any data was received fromthe network
If data was received, it is displayed on screen

190 Chapter 4, Tutorials

2. |If the user has entered any data
If the character entered was a new ine, the previously entered data is
sent, else the character is stored in a buffer.
*
/

voi d mai n(voi d)

{
char rgcM/NanmeBuf [NAME LEN]; // buffer containing ny (arbitrary) nane
char *pM/Nane; // pointer to it
int i Maxl nput; /1 maxi mum no of bytes before we nust send
1/ (to keep all in buffer)
char rgcBuf [BUF_SI ZE] ; /1 general buffer, used for sending and
/1 receiving
int iSock; /| socket for receiving and sendi ng packets
int ilLength; /1 Length of string read or witten
char cCh; /] Character read
char cMrel nfo; /1 Whether or not to display additional
i nformation
/*
add the following to main
*/
WORD wNoMCEcho; /1 Suppress display of own nessages
DWORD dwG oupAddr ess; /] Group |IP address to use

printf("Sockets UDP CHAT client\n");
printf("Copyright (C 1999 Datalight, Inc.\nAll R ghts Reserved\n\n");

/1 get user nanme and set variabl es accordingly
printf("Enter your name (send with all your messages):");
rgcM/NanmeBuf [0] = NAME_LEN - 2;

pM/Name = cget s(rgcM/NameBuf) ;

i Maxl nput = BUF_SI ZE - rgcM/NaneBuf[1] - 10;

/1 get nore info option

printf("\nDo you want to see the ip addresses of senders? [Y]/N');
rgcBuf[0] = 2;

cget s(rgcBuf);

cMrelnfo = (toupper(rgcBuf[2]) =="'N 2?2 0 : 1);

printf("\nDo you want to suppress your own nessages? [Y]/N');
rgcBuf[0] = 2;

cget s(rgcBuf);

WNoMCEcho = (toupper(rgcBuf[2]) =="'N ? 0 : NET_FLG MC_NCECHO);

printf("\nPress Alt-X to exit\n");

if ((dwG oupAddress = Resol veNane("229.1.2.3", rgcBuf, BUF_SIZE)) == 0)
Aprintf("Error on Resol veNane(): %\n", Err(iNetErrNo));

// tell 1P that we want to receive multicast datagrans

/1 on the default interface

if (Joi nG oup(dwG oupAddress, 0) < 0)
Aprintf("Error on JoinGoup(): %\n", Err(iNetErrNo));

sNet Addr . dwRenot eHost = dwG oupAddr ess;
sNet Addr . wRenot ePort = CHAT_PORT;
sNet Addr . wLocal Port = CHAT_PORT;

if ((iSock = GetSocket()) < 0)

{

Aprintf("Error on GetSocket(): %\n",Err(iNetErrNo));
return;

Chapter 4, Tutorials 191

}

if (SetSocketOption(iSock, 0, NET_OPT_NON BLOCKING 1, 1) < 0)

{
Aprintf("Error on SetSocketOpt(): %\n",Err(i NetErrNo));
return;

}

i f (Connect Socket (i Sock, DATA GRAM &sNet Addr) < 0)

{
Aprintf("Error on Connect Socket (): %\ n",Err(i NetErrNo));
return;

}
Aprintf("Socket successfully createdin");

/1 tell the world I'mon the air
iLength = sprintf(rgcBuf, "% canme on the air", pM/Nane);
if (WiteSocket (i Sock, rgcBuf, ilLength, WNoMCEcho) < 0)
/1l error
Aprintf("Error on Sending %l bytes: 9%\n",iLength, Err(iNetErrNo));

while (1)

{
/] see if we received data
sNet Addr . dwRenot eHost = Ol ;
i Lengt h = ReadSocket (i Sock, rgcBuf, BUF_SIZE, &sNetAddr, 0);
if (iNetErrNo !'= 0 & i NetErrNo != ERR WOULD_BLOCK)

Aprintf("Error on Netread: %\ n", Err(iNetErrNo));

if (iLength > 0)
{

rgcBuf[iLength] = 0;
/1 no color now | = sNetAddr.dwRenoteHost & Oxff;
/1 some color identifing host
if (cMrelnfo) // give the sender's ip address as wel |
Aprintf("From% - ", WiteNanme(&sNet Addr));
Aprintf("%\n", rgcBuf);

if (kbhit())
{
switch(cCh = getche())

/1 function key
case O:
/1 At-X exit
if ((cCh = getch()) == 45)

Rel easeSocket (i Sock) ;
LeaveG oup(dwG oupAddr ess, 0) ;
return;

}

/1 At-Q generate query
if (cCh == 16)

{

}
br eak;
defaul t:
i f (iKeyCount < i Maxlnput)

Joi nGroup(0, 0);

rgcKeyBuf [i KeyCount ++] = cCh;
br eak;

}
//fall thru
case '\r':

192 Chapter 4, Tutorials

/] case '\n":
putch('\n");
if (iKeyCount == 0) /1 nothing to do
br eak;
/1 everyone should identify hinself
rgcKeyBuf [i KeyCount] = O;
iLength = sprintf(rgcBuf, "%: %", pM/Nane,
rgcKeyBuf) ;
/] broadcast data
if (WiteSocket (i Sock, rgcBuf, ilLength, wWNoMCEcho) <
0)
/1l error
Aprintf("Error on NetWite % bytes: %\n",
i Length, Err(iNetErrNo));
i KeyCount = O;
br eak;

| ndex

AbortDCSocket, 54
AbortSocket, 54
Accept, 83
AcceptSocket, 55
address
See dso |P address, 14
Advanced power management
setting options, 161
API
Application Programming Interface, 13
APM BIOS
exposed functions of, 160
how it fitsin the power management
scheme, 158
how it interfaces to POWER.EXE, 160
Applicationsin ROM, 156
ARP: Address Resolution Protocol, 16
Asynchronous Notifications, 52
ATA disk drives
using with ROM-DOS, 8
Bind, 84
BIOS
general description of, 5
needed for advanced power management,
158, 161
BIOS cdls
using to configure ROM -DOS, 152
Blocking mode
selecting 81
Blocking Operations, 51
Bootable disks
creating with SYS or FORMAT, 8
Booting ROM -DOS
boot diagnostics, 154
from a hidden disk partition, 162
Booting the system
from a hidden disk partition, 162
BSD Sockets, 80
BUILD.BAT
use of in place of BUILD.EXE, 130
BUILD.CFG
using to rerun aBUILD session, 130
BUILD.COL
use to set colors, 130
BUILD.EXE
an example of running 132, 133
command line options, 129
BUILD.EXE program
adding built-in device drivers, 148
adding power-save capbility, 149

examples of using, 131
setting assembly defines, 146
setting target environment variables, 150
specifying aROM disk driver, 150
specifying the shell/command interpreter,
152
using to create ROM -DOS, 129, 131, 146
BUILD.TXT
contents of, 130
Building ROM -DOS
adding built-in drivers, 148
adding power-save capability, 149
boot diagnostics, 154
defines in the assembly process, 146
overview, 129, 131, 146
setting target environment settings, 150
specifying a ROM disk driver, 150
specifying the shell/command interpreter,
152
Built-in device drivers, 138
how to add to ROM -DOS, 148
Card and socket services
using with ROM-DOS, 8
CGl Application API, 118
Chat, 172
Client/Server, 12
closesocket, 86
Command interpreter
brief description of, 6
specify with CONFIG.SY'S, 152
specify with SY SGEN.ASM, 152
using asmall version, 6
Compatible API, 50
AbortDCSocket, 54
AbortSocket, 54
AcceptSocket, 55
ConnectSocket, 55
ConvertDCSocket, 56
DisableAsyncNoatification, 57
EnableAsynchNotification, 57
Eof Socket, 57
FlushSocket, 58
GetAddress, 58
GetBusyFlag, 59
GetDCSocket, 59
GetKernelConfig, 60
GetKerndlInformation, 60
GetNetInfo, 61
GetPeerAddress, 62
GetSocket, 63

194

Index

GetVersion, 63
ICMPPing, 63
Ifacel OCTL, 64
IsSocket, 65
JoinGroup, 65
LeaveGroup, 66
ListenAcceptSocket, 66
ListenSocket, 67
ParseAddress, 68
ReadFromSocket, 68
ReadSocket, 69
ReleaseDCSockets, 71
ReleaseSocket, 71
ResolveName, 72
SelectSocket, 72
SetAlarm, 73
setAsynchNotification, 74
SetSocketOption, 76
ShutDownNet, 77
WriteSocket, 77
WriteToSocket, 78
Compatible API, Aternatives, 53
Compressed Serial Line IP (CSLIP)
adescription of, 17
CONFIG.SYS
setting the processing level, 151
using to configure ROM -DOS, 150
Config.sys processing, 169
Configuring a system on-the-fly, 167
Configuring ROM -DOS
through SY SGEN.ASM instead of BUILD,
146
connect, 87
Connect Socket, 55
ConvertDCSocket, 56
Creating a bootable disk
an example procedure, 132
Creating a diskless system
an example procedure, 133
Custom memory disk
about the client functions, 143
loading from the DOS prompt, 145
Datagram Services, 51
Debugging
using boot diagnostics, 154
using print statements, 153
Debugging Locally, 153
Debugging Remotely, 153
Development system
requirements for ROM -DOS, 2
Device drivers
adding to the object library file, 140
ATA.SYS, 8
built-in to ROM -DOS, 138, 139, 140

installable under ROM -DOS, 138
loading at boot time, 140

loading only those required, 167

need to update SY SGEN.ASM for new

drivers, 141
sample code, 139

those reguired to run ROM -DOS, 138
using CONFIG.SY Sto load, 140

writing new, 139
Diagnostics

using to debug ROM -DOS, 154
DisableAsynchNotification, 57

Disk device driver

configuring for aROM disk, 138

Disk driver

including for aROM disk, 135

Disk drives

using aROM disk in place of, 6, 136

Diskless system

image filesused in, 133, 155
using aROM disk for, 135

Diskless systems

memory disk functions, 143
using a custom memory disk in, 141
using aROM disk, 6, 136

DOSIGNON

using to create a new sign-on message, 152

Double-boot system

using to boot from hidden files, 162

Dynamic driver loader

using for system configuration, 167
Dynamic system configuration, 167

Emulating adisk drive

using ROM as the disk media, 135
EnableAsynchNoatification, 57
Environment variable settings

how to add for the target system, 150

Eof Socket, 57
Error codes
trandating, 79

Error Reporting, Sockets, 52

Filenames

using long filenames with ROM -DOS, 3

Flash memory

using with ROM -DOS, 8

FlushSocket, 58

FTP, 12

FTPAPI, 128

gateway application, 15
GetAddress, 58
GetBusyFlag, 59
GetDCSocket, 59
gethostbyaddr, 111
gethostbyname, 113

Index

195

gethostname, 113
GetKernelConfig, 60
GetKernel Information, 60
GetNetlInfo, 61
GetPeerAddress, 62
getprotobyname, 114
getprotobynumber, 115
getservbyname, 116
getservbyport, 117
GetSocket, 63
getsockname, 89
getsockopt, 90
GetStackPointer, 127
GetStackSegment, 127
GetVersion, 63
Hex files

creating for placement in ROM, 155
htonl, 92
htons, 92
HTTPD Common Gateway Interfacel, 118
HttpDeRegister, 123
HTTPFTPD Common Gateway Interface,

118

HttpGetData, 124
HttpGetStatus, 126
HttpGetVersion, 126
HttpRegister, 122
HttpSendData, 125
HttpSubmitFile, 125
ICMP

Internet Control Message Protocol, 15
ICMPPing, 63
Ifacel OCTL, 64
inet addr, 93
INET for DOS

services (see services), 12
inet ntoa, 94
Installable device drivers, 138

loading at boot time, 140

writing new drivers, 139
Int 21h:, 5
ioctlsocket, 94
|P address, 14

classes, 15
|P Address resolution, 52
IsSocket, 65
JoinGroup, 65
Kernel

description of ROM -DOS, 5
L eaveGroup, 66
Libraries

ROM -DOS, 20
Library file

adding device driversto, 140

creating for new device drivers, 140
Library Header Dependencies, 19
Library Use and Linking, 19
listen, 96
ListenAcceptSocket, 66
ListenSocket, 67
Loading device drivers

dynamically loading only those required,

167
Long filenames

how to use with ROM -DQOS, 3
LONGDIR

use to display long filenames, 3
MCCHAT, multicast UDP Chat, 187
Memory disk

using a customized disk driver, 141
modem, 17
NETBIOS, 128
Newfile Command and Config.sys

processing, 169
Non blocking operations, 51
Non-blocking mode

selecting 81
ntohl, 97
ntohs, 97
ParseAddress, 68
PC cards

using with ROM-DOS, 8
Placing ROM -DOS in ROM

an example procedure, 132
Point-to-Point Protocol (PPP)

adescription of, 17
Power management

using POWER.EXE to implement, 158
POWER.EXE

how it interfaces to the BIOS, 160

how to load and run, 161

using to implement power management,

158
Power-save option

how to add to ROM -DOS, 149
Print statements

using to debug ROM -DOS, 153
Problems

getting help in solving, 2
Programming Sockets

blocking and non-blocking modes, 81

error codes, 79

establishing connections, 81

sending and receiving data 81

types of service, 80
Proprietary API, 128
Protocols

Compressed Seria Line IP (CSLIP), 17

Index

TCP/IP, 11
RAM disk
using a customized disk driver, 141
RAM disk (custom)
client code functions, 143
ReadFromSocket, 68
Read-only memory
programming ROM -DOS into, 155
ReadSocket, 69
recv, 98
recvfrom, 99
ReleaseDCSockets, 71
ReleaseSocket, 71
Remote Connections, establishing, 51
Remote Debugging, 153
ResolveName, 72
RIP, 16
ROM device(s)
loading ROM -DOS into, 155
placing ROM -DOS in the target system, 7
ROM disk
creating a diskless system, 134
overview of creating, 135
using a customized disk driver, 141
using in place of aphysical disk, 6, 136
ROM disk (custom)
client code functions, 143
ROM disk driver location
specify with SY SGEN.ASM, 150
ROM disks
configuring the device driver, 138
configuring the image file, 137
how to create, 136
ROMable applications, 156
ROMDISK.EXe
using to creste a ROM image, 7
ROMDISK.EXE
using to create adisk in ROM, 136
ROM -DOS
boot time configuration with BIOS calls,
152
boot time configuration with
CONFIG.SYS, 150
building a custom version, 129, 131, 146
configuring through SY SGEN.ASM, 146
creating a bootable disk, 132
creating a diskless system, 133, 134
creating aversion in ROM, 132
development system requirements, 2
features of, 2
overview of, 3
placing in athe target system ROM, 7
programming into ROM, 155
requirements of your target system, 2

ROM -DOS kernel
brief description of, 5

ROM -DOS Libraries, 20
AddQuad, 21
AddQuadong, 21
ComputeENAMEChecksum, 21
DivideQuadByUnsigned, 22
DIBiosGetDiskStatus, 22
DIBiosGetDriveParameters, 23
DIBiosReadSectors, 23
DIBiosResetDisk, 24
DIBiosVerifySectors, 24
DIBiosWriteSectors, 24
DICheckDQOSError, 25
DIGetBiosError, 25
dlisFat32world, 26
DILbaGetDriveParameters, 26
DILbaReadSectors, 27
DILbaV erifySectors, 27
DILbaWriteSectors, 28
DISmartL baGetDriveParameters, 28
DISmartL baReadSectors, 29
DlISmartLbaV erifySectors, 29
DISmartL baWriteSectors, 30
DriveSupportsL FNs, 30
GetSmartFindL FNAddress, 30
LbaToCHS, 41
LFNChangeDirectory, 31
LFNCreateOpenFile, 31
LFNDeleteFiles, 32
LFNEndArg, 33
L FNExtendedGetSetAttr, 33
LFNGetCreateT imeDate, 34
LFNGetCurrentDirectory, 35
LFNGetFullPath, 35
LFNGetL astAccessDate, 36
LFNGetV olumelnformation, 36
LFNMakeDirectory, 37
LFNNextArg, 37
LFNPresent, 38
LFNRemoveDirectory, 38
LFNRenameFile, 38
LFNSkipWhite, 39
LFNSplitFileName, 39
LFNStripArgQuotes, 40
L FNSubstFunction, 40
QuadMultiply, 41
SmartChangeDirectory, 42
SmartCreateOpenFile, 42
SmartDelete, 43
SmartExpandPath, 43
SmartFindAreAllClosed, 44
SmartFindClose, 44
SmartFindCloseAll, 45

Index

197

SmartFindFirst, 45
SmartFindNext, 46
SmartGetCurrentDirectory, 46
SmartGetDriveFreeSpace, 46
SmartGetFileAttributes, 47
SmartGetL astAccessDate, 47
SmartMakeDirectory, 48
SmartRemoveDirectory, 48
SmartRenameFileOrDirectory, 49
SmartWildCard Delete, 49
ZeroQuad, 49
ROM -DOS.LNK
use to recreate ROM -DOS, 130
ROM -DOS.LOC
use to recreate ROM -DOS, 130
route 15
RIP, 16
router
(see gateway application), 15
RXE, using, 156
Secondary operating system
booting from hidden files, 162
select, 101
SelectSocket, 72
send, 103
sendto, 104
Serid LinelP (SLIP)
adescription of, 17
Server API, 118
services
FTP, 12
mail, 12
socket printing, 13
telnet, 12
SetAlarm, 73
SetAsynchNotification, 74
SetSocketOption, 76
setsockopt, 106
SetStackPointer, 127
SetStackSegment, 127
Shell command
specify with CONFIG.SY'S, 152
specify with SY SGEN.ASM, 152
Shell program
using the command interpreter as, 6
shutdown, 109
ShutDownNet, 77
Sign-on messages
installing customized messages, 152
SNMP: Simple Network Management
Protocol, 16
socket, 110
Socket
datagrams, 81

reading from, 81

streams, 81

writing to, 81
Sockets

Chat, TCP based Application, 172

MCCHAT, 187

UDPChat, 181
Sockets API

Accept, 83

Bind, 84

closesocket, 86

connect, 87

gethostbyaddr, 111

gethostbyname, 113, 114

gethostname, 113

getprotobynumber, 115

getservbyname, 116

getservbyport, 117

getsockname, 89

getsockopt, 90

htonl, 92

htons, 92

inet addr, 93

inet ntoa, 94

ioctlsocket, 94

listen, 96

ntohl, 97

ntohs, 97

recv, 98

recvfrom, 99

select, 101

send, 103

sendto, 104

setsockopt, 106

shutdown, 109

socket, 110
Sockets APl Overview, 80
Sockets Proprietary API, 128
Sockets Sample programs, 171
Stream Services, 51
SuperBoot

using to boot from hidden files, 162
Support

obtaining technical, 2
SYSGEN.ASM

adding device driversto, 141
System configuration

how to do dynamically, 167
System files

placing on abootable disk, 8
System requirements

target system software needed for ROM -

DOS, 3

System requirements (devel opment)

198

Index

for ROM -DOS, 2
System requirements (target)
for ROM -DOS, 2
Target system
placing ROM -DOSin aROM, 7
requirements for installing ROM -DOS, 2
software required to support ROM -DOS, 3
TCP/IP
Internet Protocol, 14
transmission control protocol, 13
TCP/IP Basic API described, 50
TCP/IP stack
adescription of, 11

Technical support

how to obtain, 2
Transmission Control Protocol and Internet

Protocol

adescription of, 11
Troubleshooting

getting help with, 2

using boot diagnostics, 154
udp, 14
UDPChat, 181
WriteSocket, 77
WriteToSocket, 78

