

Datalight ROM-DOS

Single User Network Add-On

Printed: August 2003

Single User Network Add-On

Copyright © 1993 - 2003, Datalight, Inc.
U.S. Patent No. 6,260,156
U.S. Patent No. 5,860,082

All Rights Reserved

Datalight, Inc. assumes no liability for the use or misuse of this software. Liability for any
warranties implied or stated is limited to the original purchaser only and to the recording medium
(disk) only, not the information encoded on it.

U.S. Government Restricted Rights, Use, duplication, reproduction, or transfer of this commercial
product and accompanying documentation is restricted in accordance with FAR 12.212 and
DFARS 227.7202 and by a license agreement. Contact: Datalight, Inc., 21520 30th Drive SE, M/S
110, Bothell WA 98021

THE SOFTWARE DESCRIBED HEREIN, TOGETHER WITH THIS DOCUMENT, ARE
FURNISHED UNDER A LICENSE AGREEMENT AND MAY BE USED OR COPIED ONLY
IN ACCORDANCE WITH THE TERMS OF THAT AGREEMENT.

Datalight and ROM-DOS are registered trademarks of Datalight, Inc.
FlashFX® is a trademark of Datalight, Inc.
All other product names are trademarks of their respective holders.

Part Number: 3010-0200-0531

Contents

Chapter 1, SOCKETS Introduction ... 1
About SOCKETS..1

System Requirements...1
Chapter 2, SOCKETS Installation ... 3

Installing and Running SOCKETS..3
Development System Procedure ..3
Environment Variables ..4
File Selection ...4
Configuration...5
Transfer...5
Testing..5

Chapter 3, SOCKETS Configuration .. 7
Packet Driver...7
Serial Operation ..7

Hardware considerations...7
PPP Funtionality ...8

Modem Operation...8
SOCKETS Configuration Files: SOCKET.CFG, HOSTS ..8
SCONFIG Overview..9
SOCKET.CFG Samples ..9
SOCKETP, SOCKETM Overview..10
XPING..11
SOCKETS COMMAND SUMMARY...11

Chapter 4, SOCKETS Configuration Commands ...13
Commands ...13

Overview..13
Notations and Conventions ...13
Command Reference..13
Setting PPP Options, Local and Remote LCP/IPCP...20
Setting PPP Options, Retry Counters..21
Setting PPP Options, Timeout Values - in milliseconds..21
Setting PPP Options, Authentication - username/password..21
Setting PPP Options, Open - a specified layer...22
Start – an lcp connection ...22
Listen – for an lcp connection ..22

SOCKETS command line options...35
Modem Configuration File Syntax..36

Retry Strategy on Time-out...39
Multi Destination Drivers..40

Configuration Considerations...42
MTU (Maximum Transmission Unit) ...42
MSS (Maximum Segment Size)...42
Buffers ..43

4 Contents

Chapter 5, SOCKETS Configuration Examples...45
Example 1: Ethernet Connection – SOCKETS Serving a Web Page....................................45
Example 2: Serial Connection – SOCKETS Dial-up to ISP ...46
Example 3: Single Dial-in Connection ...47
Example 4: Single Dial-in Connection with ASY Interface..48
Example 5: Direct Serial Connection with SOCKETS as a Server49
Example 6: Direct Serial Connection with SOCKETS as a Client ..51
Example 7: SOCKETS Machine Using Call Back Verification...53
Example 8: SOCKETS Machine with CBV and Logging-in..55
Example 9: Dial-up SLIP Connection with SOCKETS as an IP Router57
Example 10: Multiple Dial-in Connections..59

Chapter 6, SOCKETS Utility Descriptions ..63
SOCKETS Utilities ..63

Installing SETHOST ..76
Chapter 7, SOCKETS Server and Client Applications...81

HTTP Server..81
Overview..81
Server..81
Remote Console Server ...82
Remote Console Client ..82
Extension CGI ...82
Passive Mode...83
Server Memory ..83
Spawning CGI ...84
Authentication...84
HTTPD Program...84
Format of "SOCKET.UPW"...85
Format of "htaccess"..86

FTP Server ...87
FTPD Program..87
FTP Server Commands..88

Combined HTTP and FTP Server..89
HTTPFTPD Program...89

Appendix A, Packet Drivers ...93
Overview..93

Packet Driver Installation..93
Using a Memory Manager with a Packet Driver...94

Packet Driver over ODI Driver Installation ...94
Using a Memory Manager with an ODI Driver...95

Packet Driver over NDIS2 Driver Installation...96
Using a Memory Manager with an NDIS Driver..97

Appendix B, Network Management and Troubleshooting ..99
Network Management..99
Configuration Case Studies...99

Managing Host Names on a File Server-Based LAN...99
System Timer Interrupt Use... 100
Advanced Network Configuration.. 101

Contents 5

Tuning TCP/IP ... 101
TCP Retry Strategy.. 101
Keep-alive ... 102

Troubleshooting... 102
Problems with LICENSE.DAT File ... 102
XPING... 102

Utility Programs ... 103
PDTEST, Packet Driver Test Utility .. 103
SETHOST, IP Address Maintenance Utility .. 103
IPSTAT, IP and Memory Statistics Utility.. 103

SOCKETS Glossary..105
Index..111

Chapter 1, SOCKETS Introduction

About SOCKETS

System Requirements
SOCKETS requires an IBM compatible 186 or higher system with a minimum:

• 512KB of RAM

• ROM-DOS 6.22 or compatible

SOCKETS network operation requires one or more of the following, depending on the network
configuration:

• Any network interface supporting the packet driver specification class 1, 3, 6 or 11.

• PC compatible asyncronous serial ports (COM ports).

• Any network supporting the ODI specification

Datalight SOCKETS is an Internet protocol software extension to ROM -DOS that provides a
powerful data communication facility whereby embedded systems and users of embedded systems
can communicate with other computers (including PCs and mainframes) and their printers.
Datalight SOCKETS also provides the facilities to run custom-written applications which allows
you to:

• Run applications on a TCP/IP host system from a remote embedded system.

• Transfer data between an embedded system and TCP/IP hosts.

• Run network aware applications on an embedded system.

• Print to an embedded system from TCP/IP hosts and vice versa.

Datalight SOCKETS consists of :

• A TSR kernel:

Connecting to a physical Ethernet or Token Ring network using a network interface with
associated Packet Driver and/or to a point-to-point serial network using standard
serial communication ports with or without modem dial in/out.

Implementing standard Internet protocols ARP, PPP, LCP, IPCP, PAP, CHAP MD5, IP,
ICMP, IGMP, RIP, UDP, TCP, BOOTP, DHCP and DNS.

 Providing IP routing support.

Providing two Application Programming Interfaces (APIs)

Providing a Socket Print client

Providing a Socket Print Server and LPD Server

• A SOCKETS configuration program.

• Utility programs to test the network and display the status of the kernel.

• Mail programs in source and binary format.

2 Chapter 1, SOCKETS Introduction

• Resident servers for FTP, HTTP and Remote Console including a CGI API for serving
dynamic web-pages and a Remote Console Java applet to emulate a DOS console of the
embedded system on a Java capable browser.

• Support for telnet clients, including an ANSI/VT emulator.

• An FTP client and a simple HTTP file GET utility.

• Print clients for SOCKETS printing and LPD printing (LPR).

• A resident RFC compliant NETBIOS API.

Chapter 2, SOCKETS Installation

Installing and Running SOCKETS
Upon receiving SOCKETS, electronic or CD, SDK or demo, the first step involved is installing to
a Windows 9X or WIN NT based development system. The install process will create, by default,
a directory of C:\DL\SOCKETS.

 <root>
 '
 +---<DL>
 ¦
 +--- SOCKETS
 +--- CLIENTS
 +--- CONFIGS
 +--- DOCS
 +--- EXAMPLES
 +--- SERVER
 +--- UTILS

Default Directory Structure

The files installed cover:

• Kernel applications (the core of TCP/IP communication)

• Configuration examples

• Utilities

• Optional applications

The SDK does not include drivers for Network Interface controllers; hereafter referred to as a
NIC. Please refer to Chapter 3 for information on obtaining and configuring network drivers as
well as serial configuration details.

The remainder of this chapter describes how to proceed after SOCKETS has been installed to the
development system.

Development System Procedure

Insert the ROM-DOS / SOCKETS SDK into your CD-ROM and run “D:\SETUP” where “d” is
the appropriate drive letter for your CD. The install process will create a DL\SOCKETS directory.
Within the directory DL\SOCKETS will exist the kernel applications SOCKETM.EXE and
SOCKETP.EXE. Beyond that, there are subdirectories for:

• UTILS - contains tools for troubleshooting and configuring SOCKETS.

• CONFIGS - contains example configuration files for SOCKETS connections.

• EXAMPLES - contains programming examples.

• CLIENTS - contains the client applications.

4 Chapter 2, SOCKETS Installation

• SERVER - contains the SOCKETS server providing HTTP and FTP services.

Environment Variables

SOCKETS uses environment variables to determine the location of necessary configuration files.
They can be set, using DOS SET command, within the autoexec.bat file at startup or within a
batch file prior to SOCKETS being loaded. They are:

• SOCKETS

• HTTP_DIR

• HOSTNAME

• FTPDIR

Examples
Set SOCKETS=C:\NETWORK

Set HTTP_DIR=C:\HTML

Set HOSTNAME=FTPDEMO

Set FTPDIR=C:\FTP

Remarks

The environment variable SOCKETS is used to indicate to the SOCKETS kernel where
configuration files, license file for the demo version, and access rights files are located. For
example “Set SOCKETS=C:\NETWORK” would cause SOCKETS to look for configuration
files within the directory of C:\NETWORK.

The environment variable HTTP_DIR is used by the SOCKETS server and indicates the
location of html files if the files are stored in a separate directory from the server executable.
To continue with the previous example if the server were in the directory of C:\NETWORK
and the html files were in C:\HTML then the environment variable would read “SET
HTTP_DIR=C:\HTML”.

The environment variable HOSTNAME is used by SOCKETS to indicate the banner name
displayed during an FTP session.

The environment variable FTPDIR is used by SOCKETS to indicate the location of the
temporary file created by the SOCKETS server during an FTP session. Please refer to
Chapter 7 for more details.

File Selection

What you wish to do with the SOCKETS TCP stack will dictate which files are to be transferred
to the target hardware. At a minimum your target hardware will require the TCP stack executable:

• SOCKETM.EXE for serial / ppp connection

• SOCKETP.EXE for an Ethernet connection

• SOCKET.CFG for both serial and ethernet use

• MODEM.MCF for a serial / ppp connection

Chapter 2, SOCKETS Installation 5

If you wish to use the Datalight Web Server with SOCKETS you will need the HTTPD.exe file
located within DL\SOCKETS\ \SERVER. You will also need an index.htm file that dictates what
information the web server displays. One has been provided within the same directory.

Full explanations of the files are available in”Chapter 7, SOCKETS Server”on
page 81.

Configuration

The configuration of SOCKETS is determined by what you would like to do with the TCP/IP
stack. Some examples are provided within “Chapter 5, SOCKETS Configuration Examples”
of the types of configurations easily accomplished with SOCKETS. For quick testing of
SOCKETS please reference the sample configuration files supplied within the \CONFIGS
directory. Their explanations are found in “Chapter 5, SOCKETS Configuration Examples”.

To make your own configuration, run the supplied file sconfig.exe to configure SOCKETS for
your target hardware. SCONFIG.EXE is a text -based tool that will prompt for various settings
necessary to customize SOCKETS. At completion sconfig.exe creates the file SOCKET.CFG that
must accompany SOCKETS to the target hardware. Running SCONFIG may take place on either
your target hardware or your development system. If you wish to configure the stack after
transferring files to your target hardware, please include the file SCONFIG.EXE in your list of
files to be transferred to your target hardware.

Transfer
Transfer the selected files onto the target system into a \DL\SOCKETS\ directory. As Datalight
ROM-DOS has various methods of serial port transfers available, please refer to the ROM-DOS
manual for specific details.

Testing

If you are using an Ethernet TCP stack you must first load a packet driver specific to your NIC.
The packet driver provides a software interrupt to allow communication between the NIC and
SOCKETS (default is 0x60). If you do not have a packet driver or are unsure of its use please
contact Datalight Technical Support. Although Datalight does not manufacture packet drivers our
support team is knowledgeable about packet driver implementation.

Type SOCKETM.EXE or SOCKETP.EXE to launch SOCKETS. The various options for
launching SOCKETS are:

/n=normal_sockets

/i=capi_interrupt

/d=dos_compatible_sockets

/m=memory_size

/p=print_delay

/s=stack_size

/v=interrupt_vector

/q

/0

6 Chapter 2, SOCKETS Installation

/u

Once SOCKETS has been loaded correctly, the most basic test to ensure that everything is
working correctly is to “XPING” a known server or gateway that the SOCKETS machine is
connected to. If the ping is returned everything is working, if the ping fails please refer to the
troubleshooting section of the SOCKETS manual.

Chapter 3, SOCKETS Configuration

Configuring SOCKETS consists of setting up environment variables, loading required drivers,
creating configuration files and running the appropriate SOCKETS kernel with the correct
command line parameters.

The SOCKETS environment variables are discussed in Chapter 2, SOCKETS Installation .

Packet Driver
 When SOCKETS is required to interface to a Local Area Network or any special network, one or
more Packet Drivers must first be loaded. A Packet Driver presents a standard interface to
underlying network hardware and is normally supplied by the vendor of the NIC used to connect
to the physical network.

The following packet-driver classes are supported:

• Class 1 DIX Ethernet
• Class 3 Token Ring
• Class 6 SLIP
• Class 11 IEEE Ethernet

Most Ethernet packet drivers support both classes 1 and 11. As the default, Class 1 should
normally be used.

Each Packet Driver requires a software interrupt vector through which it is accessed. For a single
Packet Driver, Interrupt 0x60 or 0x69 is normally used. Avoid using Interrupt 0x61 and 0x7f as
those are the defaults used by the SOCKETS APIs. Interupt 0x62 is the default used by the
SOCKETS FTP API and 0x63 that of the SOCKETS HTTP Extension CGI API.

For specific information on loading packet drivers, refer to the documentation of the specific
driver you are using.

Example:
rtspkt 0x60

When only one Packet Driver is used, the SOCKETS kernel will search for the interrupt vector
when the interface command in the configuration file specifies that a Packet Driver must be used.
The interrupt can also be explicitly specified and must be so specified when more than one Packet
Driver are used.

Serial Operation

Hardware considerations

For asyncronous serial operation SOCKETS supports the standard PC COM ports without an
external driver. Up to six COM ports with or without interrupt sharing may be used. SOCKETS

8 Chapter 3, SOCKETS Configuration

checks for and uses FIFO buffered 16550 UARTs for faster throughput. It is strongly
recommended that buffered UARTs be used for high-speed applications.

The interface command in the configuration file specifies the I/O address, hardware interrupt and
speed to be used and parameter commands can be used to specify character data format and flow
control. Flow control may be performed by means of modem control signals (hardware flow
control) or XON/XOFF control characters (software flow control). Software flow control is only
possible when PPP is used. It will not function for SLIP or CSLIP.

PPP Funtionality

PPP can be set up for “client” and/or “server” operation. “Client” operation normally refers to a
dial-out operation and “server” to a dial-in operation.

For “server” operation, log-in is controlled by a list of Username/Password pairs, each coupled to
a remote IP address, which is assigned to the peer if requested to do so during the IPCP
negotiation. As an option, a Username/Password pair can be flagged to provide Callback
Verification (CBV). In this case, the call is terminated as soon as the PPP negotiations have been
successfully completed. Then a reverse call is made by the server; using the number in the modem
command file if a modem is involved. During the first subsequent set of PPP negotiations, the
CBV flag is ignored to prevent another callback. When the PPP session terminates, the CBV flag
is again enabled.

Another PPP feature is the ability to specify that a PPP session should start immediately when
SOCKETM is loaded, or to delay that until traffic is generated. It is also possible to specify two
sets of PPP parameters per interface. One set of parameters is for outgoing connections; the other
set is for incoming connections.

Modem Operation
When using serial operations, modem dial-in and dial-out, may optionally be used. Simple modem
scripting commands contained in modem configuration files may be used to establish modem
connections. Commands in the modem file can specify that a dial-up connection will always be
dialed whenever DCD is not detected, or specify that dial on demand is disabled.

In order to work properly, the DCD modem signal must be supported by the hardware and the
modem must drop a connection when the DTR modem signal is lowered. The modem must also
support a command set like the AT command set. If the hardware does not comply with these
requirements, a modem may still be used. In this case the interface will be specified as not having
a modem and a user program must perform the modem connect/disconnect functions.

SOCKETS Configuration Files: SOCKET.CFG, HOSTS
SOCKETS uses two files in the \DL\SOCKETS directory (default), or any other directory
specified by the SOCKETS environment variable. These files are SOCKET.CFG, the default
start-up file, and HOSTS, the host names file. If not found, SOCKETS uses the default
SOCKET.CFG in the \DL\SOCKETS directory.

SOCKET.CFG is a text file containing configuration commands. Empty lines and lines starting
with # are ignored. Commands are used to specify protocol parameters like the IP address of the

Chapter 3, SOCKETS Configuration 9

stack, interface parameters like Packet Driver or Asyncronous Serial lines, routes and various
other parameters. Here is a simple example:

ip address demo

Set the IP address of this host to 192.6.1.1.
interface pdr if0 dix 1500 5

Use Packet Driver, naming the interface ‘if0’, MTU=1500, Receive
buffers = 5

route add default if0 router
Route all traffic to unkown destinations via ‘if0’ using ‘router’
as a gateway

tcp mss 1460
TCP Maximum Segment Size = 1460.

tcp window 2920
TCP Maximum window = 2920.

start prntserv
Start printer server on PRN using default port of 10.

HOSTS is an optional file containing mappings of IP addresses in dotted decimal notation to
names.

Sample HOSTS file:
192.6.1.1 demo
192.6.1.2 router
192.6.1.3 server

SCONFIG Overview
SCONFIG is a SOCKETS configuration utility. It supports only the barest configurations:
Ethernet over a packet driver and PPP over a serial modem. Just answer the multiple choice
questions, and then fill in a few data fields and SCONFIG writes simple SOCKET.CFG and
MODEM.MCF files for you.

SOCKET.CFG Samples
The following configuration file contains the minimum possible commands for a valid
configuration file: just one. This is to specify that the interface should use a Packet Driver, the
interrupt vector which must be searched for. It should use DIX encapsulation, have an MTU of
1500 and have a maximum of 5 receive buffers. Since no IP address is specified, BOOTP will be
used and the required operating parameters will be retrieved from a BOOTP server, which must be
available on the network.

SOCKET.CFG:
interface pdr if0 dix 1500 5

The following is a more typical example specifying a static IP address, a Packet Driver interface, a
default route, the TCP MSS and WINDOW, and the SOCKET PRINT server to be started.

 SOCKET.CFG:

10 Chapter 3, SOCKETS Configuration

Sample configuration file
ip address 192.6.1.1
interface pdr if0 dix 1500 5
route add default if0 192.6.1.2
tcp mss 1460
tcp window 2920
start prntserv

The next example is a configuration file for running PPP over a direct serial link (no modem). It
uses COM1 at the default I/O address of 0x3f8 using interrupt level 4 at 9600 baud with no flow
control. The local IP address in this case will be obtained from the PPP peer. No compression of
PPP headers and no TCP/IP header compression will be negotiated. No authentication will be
done.

SOCKET.CFG:
iface asy p0 ppp 1500 30 0x3f8 4 9600
route add default p0
par p0 ipcp local address 0.0.0.0
par p0 lcp start
par p0 ipcp open

The following example is a a more typical configuration file for running PPP over a direct serial
link with a modem. It uses COM1 at the default I/O address of 0x3f8 using interrupt level 4 at
28800 baud with Xon/Xoff flow control. The local IP address in this case will be obtained from
the PPP peer. Compression of PPP headers and TCP/IP header compression will be negotiated.
PAP authentication will be negotiated and “PppUser” as a username and “PppPasword” as a
password will be used for authentication. Modem commands will be retrieved from the
MODEM.MCF file.

SOCKET.CFG:
iface asy p0 ppp 1500 30 0x3f8 4 28800 modem.mcf
param p0 288000 x x
route add default p0
par p0 lcp local accm 0x0a00000
par p0 lcp local acfc on
par p0 lcp local pfc on
par p0 lcp local magic on
par p0 pap user PppUser PppPassword
par p0 ipcp local compress tcp 16 1
par p0 ipcp local address 0.0.0.0
par p0 lcp start
par p0 ipcp open

SOCKETP, SOCKETM Overview
Two versions of the SOCKETS kernel are available: SOCKETM.EXE provides support for serial
connections as well as Packet Driver connections. SOCKETP.EXE only provides support for
Packet Drivers and has a smaller memory footprint than SOCKETM.EXE. SOCKETM or
SOCKETP runs as a Terminate and Stay Resident (TSR) program.

Chapter 3, SOCKETS Configuration 11

Running SOCKETP or SOCKETM without any parameters will be sufficient in simple
configurations and will use the default %SOCKETS%\SOCKET.CFG and %SOCKETS%\HOSTS
configuration files. Parameters are used to specify another configuration file and to tailor the
facilities like memory and stack usage, number of simultaneous connections and the API interrupt
vectors to use. The /U parameter may be used to unload an already resident SOCKETS kernel.

XPING
The XPING.EXE (external ping) program gives a quick method to test your SOCKETS
installation. The source code is also supplied as an example. XPING starts a continuous string of
pings until stopped by a keystroke.

Syntax

XPING IP_address [interval]

Where the IP_address may be a numeric or symbolic address and the interval is the time to wait
between pings in timer clock ticks. The default is 10 ticks.

SOCKETS COMMAND SUMMARY
Command Description Location

ARPSTAT Displays information about the current ARP table and allows
entries to be removed.

Page 63

DHCPSTAT Displays status about the DHCP settings and allows a DHCP
lease to be renewed.

Page 63

FTP File Transfer Protocol (FTP) client application. Page 64

FTPD A server providing FTP services. Page 87

GETMAIL A POP3 mail client. Page 67

HTTPD A server providing HTTP services. Page 81

HTTPFTPD A server providing both HTTP and FTP services. Page 89

HTTPGET An application that can retrieve files from an HTTP server. Page 67

IFSTAT Displays information about configured SOCKETS interfaces. Page 68

IOCTL A diagnostic utility for testing the SOCKETS TCP/IP Basic API
IOCTL functions.

Page 68

IOCTLH A diagnostic utility for testing the SOCKETS TCP/IP Basic API
IOCTL Hotswap functions for wireless or removable Ethernet
cards.

Page 69

IPSTAT Displays information about SOCKETS memory usage and IP
interface.

Page 69

LPR A printer client for UNIX style print servers. Page 70

MAKEMAIL Prepares text and data for sending through SENDMAIL. Page 71

12 Chapter 3, SOCKETS Configuration

Command Description Location

NETBIOS A TSR that provides a NETBIOS compatible network interface. Page 72

PDTEST A diagnostic program that tests loaded packet drivers. Page 73

RC.JAR A Java remote console applet for connecting to hosts running
HTTPD.

Page 73

RC_DK.JAR A version of RC.JAR with Danish keyboard support. Page 74

RCCLI A DOS remote console client for connecting to hosts running
HTTPD.

Page 74

SCONFIG A SOCKETS configuration utility. Page 9

SENDMAIL delivers e-mail messages packaged by MAKEMAIL to an
Internet mail server.

Page 75

SETHOST Sets an environment variable to the name of the SOCKETS client
based upon the client’s MAC address.

Page 75

SNTPCLI Used for getting the system network time information. Page 75

SPRINT A simple printer client that prints through a SOCKETS host
configured as a print server.

Page 78

TCP a utility used to examine and change the TCP parameters. Page 79

XPING A utility to send ICMP messages continuously to a specified
host.

Page 79

Chapter 4, SOCKETS Configuration Commands

Commands

Overview
This section describes the SOCKETS configuration commands available when starting and
running SOCKETS. To execute any of the commands described in the following sections, insert
the appropriate entries in the SOCKET.CFG or another configuration file.

Notations and Conventions

In the command summary, use is made of the hostid notation, which denotes a host, router,
gateway, or network. hostid may be specified either by a symbolic name listed in the HOSTS file,
or a numeric IP address with decimal notation; for example, 192.10.240.1.

The following conventions apply to command syntax.

• italics indicate that the term is a parameter to be specified by the user.

• [] Square brackets indicate that the enclosed item is optional.

• / A forward slash is used as a leading character for an optional switch in some
commands. Both the forward slash and the switch that follows it form part of the
command syntax. The equal sign before extra parameters is optional in most cases.

• | The vertical bar indicates that there is a choice between two or more selections, but that
only one of the options indicated may be specified.

• bold type indicates a reserved key word as part of the command syntax and is to be typed
exactly as indicated.

• # Commands proceeded by a hash sign (#) are ignored. They are used for comments in
configuration files.

Command Reference

arp

arp adds a new entry to the Address Resolution Cache. arp can also specify the type of ARP used
to determine IP address conflicts.

Syntax
arp add hostid ether | ieee hw_addr
arp init {DHCP | GRAT | BOTH}

14 Chapter 4, SOCKETS Configuration Commands

Remarks
'arp add' includes a new entry in the Address Resolution Cache. Do not add entries with
duplicate IP or hardware addresses as this will cause malfunctioning of the network.

‘arp init’ specifies the type of ARP used to determine IP address conflicts. By default
both DHCP and Gratuitous ARPs are sent to determine if the SOCKETS IP address
conflicts with any other IP address.

The DHCP and Gratuitous ARP types are slightly different methods of determining IP
address conflicts, but each causes a different set of events to occur. In both cases, if a
machine is currently using the IP address specified in the ARP packet, that machine will
respond to the ARP request which sigals an IP address conflict.

DHCP ARP was designed to be used in conjunction with an IP address received from a
DHCP server. A machine could lose it's lease an IP address, but continue to use that IP
address. As a result, the DHCP ARP is used to make sure that another machine is not
urrently using the specified IP address. Fortunately, the DHCP ARP can also be used
with static IP addresses. A difficulty arises when a Proxy Server receives a DHCP ARP
packet, the server responds on behalf of the IP address.

A Proxy Server responds to ARP requests for a set of machines that may not always be
available for network traffic. If a machine using that IP address is being served by a
Proxy Server, even if the DHCP ARP came from a machine being served by a Proxy
Server, it responds to the DHCP ARP packet which signals an IP address conflict.

The Gratuitious ARP can also be used to determine IP address conflicts, but it has one
major side effect. When a machine receives a Gratuitous ARP packet, and has the
requested IP address in it's ARP table, that machine will update it's ARP table to match
the hardware address contained in the Gratuitous ARP packet. If another machine is
currently using the requested IP address, then that machine can no longer communicate
with the network until it sends out another Gratuitous ARP.

By specifying BOTH, a DHCP ARP is broadcast to the network, and if no other machine
responds, then a Gratuitous ARP is broadcase to the network. The followup Gratuitous
ARP causes APR tables with the requested IP address to be updated with the MAC
address with the Gratuitous ARP.

Options
hostid

The IP address of a remote host that is to be added to the ARP cache. This value
may be a symbolic name from the HOSTS file or a decimal (dotted) address.

hw_addr
Used with add it denotes the hardware (node) address of the remote host whose IP
address is given in hostid. This must be a six-digit hexadecimal address separated
by colons for Ethernet.

DHCP
Used to do only DHCP ARP to determine IP address conflicts.

GRAT
Used to do only Gratuitous ARP to determine IP address conflicts.

BOTH
Used to do DHCP and Gratuitous ARP to determine IP address conflicts. This is the
default action.

Chapter 4, SOCKETS Configuration Commands 15

Example Commands
arp add unix_host ether 00:00:65:0D:E6:04
arp add 127.0.1.3 ether 00:00:65:0D:E6:04
arp init grat

domain

If a host name is not a decimal (dotted) address and it is not found in the HOSTS file and at least
one Domain Name Server has been defined, an attempt is made to obtain the address from the
defined DNS server(s). The number of times any server is polled (retries), in addition to the time
to wait for a response, can also be specified. A suffix may be specified and is attached to all
names not containing any dots.

All of the following sub-commands can be issued without the optional parameters to obtain
information on the current status.

Syntax
domain server [host_name]

domain retry [retry_count]

domain time [wait_time]

domain suffix [domain]

Remarks
domain server adds a DNS address or lists the current servers if host_name not specified.

domain retry specifies the retry count for polling each server. domain retry lists the retry
count if retry_count not specified.

domain time specifies the time (milliseconds) to wait for a response before attempting
retry. domain time lists the time (milliseconds) to wait if wait_time not specified.

domain suffix specifies the domain suffix to add to all simple names; names that contains
no dots. domain suffix lists the domain suffix if domain is not specified.

Example Commands
domain retry 3
domain server 196.2.1.1
domain suffix myorg.co.za
domain time 2000

iface

iface is a synonym for the interface command.

16 Chapter 4, SOCKETS Configuration Commands

interface

interface informs SOCKETS of the hardware or software communications interface(s) to be used
at the network interface level. At least one network interface is required, and two or more are used
in gateway (router) applications.

The class, or mode, of each interface defines the encapsulation used for packaging the data frame
into the transport frame. Some types of interface support only one class.

When SOCKETS is defined with multiple interfaces, you first declare an IP address which is
associated with the immediately following interface. The defined net mask is then used to add a
route through the interface to the connected network. Using the same IP address would result in
multiple routes to the same network. The default route is set on the first interface with an IP
address with a zero net mask (for example, IP address 19.63.10.11/0).

Each interface command uses the IP address from the last supplied IP address command.

Syntax (general)
interface type name class other parameters

Syntax (specific)
interface pdr name dix mtu numbuf [intvec [irq]]

interface asy name [slip | cslip | ppp] mtu buflim ioaddr iovec speed [modemfile]

interface mdd name [slip | cslip] mtu buflim ioaddr iovec speed [modemfile]

interface aslink name [slip | cslip] mtu buflim ioaddr iovec speed [modemfile]

Options
type

type defines the type of hardware or software interface.

interface supports the following software interfaces.
Interface Description

asy Standard PC asynchronous interface (RS232 port)
pdr packet driver interface

name
name defines the name by which the interface is known on the local host. name is a
symbolic name known only to the local host on which it is used.

name may be arbitrarily assigned. Each interface command on the same host must
have a unique name assigned. This name is used by other commands referring to
this interface, e.g. the param command.

class
class specifies how IP datagrams are to be encapsulated in the link level protocol of
the interface. Some interfaces offer a choice between classes while others use a
fixed class. The following classes are available and are listed with their associated
types.

Type Class (defined in the following list)

pdr dix, ieee, token, driver, slip

Chapter 4, SOCKETS Configuration Commands 17

Type Class (defined in the following list)

asy slip, cslip, ppp
mdd slip, cslip
aslink slip, cslip

Class Description

dix The DEC/Intel/Xerox Ethernet interface also known as Blue Book
Ethernet or Ethernet II.

token IBM Token Ring. Source routing is supported for multiple rings.
ieee IEEE: 802.3 Ethernet with SNAP headers.
driver Use the default class for the packet driver.
slip Serial Link Internet Protocol (SLIP) for point-to-point asynchronous

links. This mode is compatible with UNIX SLIP.
cslip Compressed Serial Link Internet Protocol (SLIP) for faster reaction over

point-to-point synchronous links.
ppp Point-to-point protocol over asynchronous links.

mtu
mtu specifies the Maximum Transmission Unit size, in bytes. Datagrams larger than
this limit are fragmented into smaller pieces at the IP layer. The maximum value of
mtu for the various interfaces is:

Ethernet - 1500

For serial links a standard value for mtu is 576. (576 is the maximum according to
specifications, but may be increased on reliable connections as long as both sides
use the same value.)

numbuf
numbuf specifies how many incoming datagrams may be queued on the receive
queue at one time. If this limit is exceeded, further received datagrams are
discarded. This mechanism is used to prevent fast interfaces from filling up memory
when data cannot be handled fast enough.

buflim
buflim specifies the maximum number of outgoing datagrams or packets to queue
before starting to discard datagrams. This mechanism is used to prevent the memory
from filling up when a serial link goes down.

bufsize
bufsize specifies the size of the ring buffer in bytes to be allocated to the receiver in
raw mode

intvec
intvec specifies the software interrupt number (vector) in hexadecimal to use for
resident packet drivers.

ioaddr
ioaddr is the I/O base address in hexadecimal of a serial port or the hardware
controller and must correspond with the jumper or switch settings used during the
setup of the controller board. The standard values for serial ports are:

COM1 03F8h

18 Chapter 4, SOCKETS Configuration Commands

COM2 02F8h

COM3 03E8h

COM4 02E8h

iovec
iovec is the hardware interrupt vector used by the serial port or controller and must
correspond with the jumper or switch settings used during setup of the controller.
The standard values for serial ports are:

COM1 4

COM2 3

COM3 4

COM4 3

irq
irq is the hardware interrupt vector used by the network interface controller. This is
only used for faster response in SOCKETS.

modemfile
A file containing the modem commands and scripts.

speed
speed specifies the transmission speed for serial interface devices (baud rate).
Before using a serial connection you have to set flow control with the par
command.

Examples
interface pdr if0 dix 1500 5 0x60
interface asy ser0 cslip 576 15 0x3f8 4 9600
interface asy p0 ppp 576 5 0x3f8 4 9600 pppmod.mcf

IP

IP displays or sets the values of the options selected when defining the IP (Internet Protocol) host
address of the next interface to be defined.

Syntax
IP address [hostid [/net_bits]]

IP status

IP ttl [number]

Remarks
IP address sets the IP host address of the next interface to be defined. A route is
automatically added to each interface for the default or specified net mask for its address.
To make an automatic route the default, specify the net bits as zero. When specified
without the optional parameters, IP address displays the current value(s) of the local host
IP address(es). To assign different IP addresses to different interfaces on the same host,
an IP address statement must precede each interface definition. The last IP address given
is used in case of missing IP address statements.

IP status displays Internet Protocol (IP) statistics, such as total packet counts and error
counters of various types. It also displays statistics on the Internet Control Message

Chapter 4, SOCKETS Configuration Commands 19

Protocol (ICMP). This includes the number of ICMP messages of each type sent or
received.

IP ttl sets the default time-to-live value which is placed in each outgoing IP datagram.
The ttl value limits the number of gateway hops the datagram is allowed to take in order
to kill datagrams that got stuck in loops.

Options
hostid

hostid specifies the IP host address to assign to the next interface to be defined. This
may be a symbolic name from the HOSTS file, or a dotted decimal address.

/net_bits
A net mask can be specified for the host. In the IP address command an optional
/net_bits can be used to indicate the number of bits in the network ID. The net mask
is used to determine whether an incoming datagram is a broadcast and also for
sending UDP broadcasts.

Net masks are more easily represented in binary or hexadecimal format. For
example, the IP address 128.1.1.5/24 corresponds to a net mask of 255.255.255.0
(FFFFFF00h), 25 bits to 255.255.255.128 (FFFFFF80h) and 26 bits to
255.255.255.192 (FFF FFC0h).

The default net mask used corresponds to the class of address used if not explicitly
specified.

Net Bits Net Mask Class IP address range

8 255.0.0.0 A 0.x.x.x to 127.x.x.x
16 255.255.0.0 B 128.x.x.x to 191.x.x.x
24 255.255.255.0 C and higher 192.x.x.x or higher

If you want to subdivide your network, you can divide it by two for every net bit
added. The following table provides information on converting between net bits and
net mask. The number of net bits to add when changing a 0 in the net mask to:

Net Bits Net Mask Net Bits Net Mask

1 128 5 248
2 192 6 252
3 224 7 254
4 240 8 255

number
When number is omitted, IP ttl displays the current value of the time to live
parameter.

par

par invokes a device-specific control routine. par operates differently for each interface type and
even interface mode.

20 Chapter 4, SOCKETS Configuration Commands

Syntax
par ifname [arg1...argn]

Options
ifname

ifname defines the name used in the interface command for the device to be
controlled.

arg1...argn
These parameters depend on the type of interface in use.

Example
To change the baud rate of a serial interface and specify software flow control, use:

par sl0 19200 x x

par, Configuring the PPP Interface

The PPP interface is optionally configured by using the par command. Various parameters at the
LCP, IPCP and PAP levels can be specified.

Setting PPP Options, Local and Remote LCP/IPCP

When a local option is specified, the value of the option is used in the initial Configuration
Request to the peer. Options not specified, are not be requested. For each option, the ‘allow off’
parameter disallows the peer to include that option in its response. By default, all options are
allowed in the response, even if the option is not included in the request.

When a remo te option is specified, the value of the option is used in the initial response to the
configuration request from the peer. If an option is disallowed, it does not allow the remote to
specify that option in its request. By default all options are allowed.

Local and remote options are specified by:

par iface lcp|ipcp local|remote option [parameters ...] [allow [on|off]]

The par command options are as follows:

Syntax Description

par iface lcp|lcpin local|remote accm bitmap Set the Asynch Control Character Map. The default is
0xffffffff.

par iface lcplcpin local|remote authent
[pap|chap|none|allow [on|off]]

Set the Authentication protocol. The default is none.

par iface lcp|lcpin local|remote acfc
[on|off|allow [on|off]]

Set Address and Control Field Compression. The default
is off.

par iface lcp|lcpin local|remote pfc
[on|off|allow [on|off]]

 Set Protocol Field Compression. The default is off.

par iface lcp|lcpin local|remote magic
[on|off|value|allow [on|off]]

Set the Magic number option (detects looped back
circuits)

Chapter 4, SOCKETS Configuration Commands 21

Syntax Description

par iface lcp|lcpin local|remote mru
 [size|allow [on|off]]

Set the Maximum Receive Unit. The default is 1500.

par iface lcp|lcpin [open|start|listen] Set the LCP connection mode.
start is used to initiate a connection as soon as the stack
has been loaded. If a modem is used, this will also
initiate an immediate dial-out.

open is used to delay a connection until data needs to be
sent. If a modem is used, this provides a dial-on-demand
facility.
listen is used when the peer must initiate the connection.

Note that two commands can be given to specify both
open and listen in which case a connection can be
initiated from either side.

par iface ipcp|ipcpin local|remote adress
[ip_address>|allow [on|off]]

Set the IP address option. If set to 0.0.0.0, the peer must
supply it.

par iface ipcp|ipcpin local|remote compress
 [[tcp slots [flag]] | [allow [on|off]]]

Set the TCP/IP header compression. slots should be
equal to the maximum number of concurrent TCP
connections. Low values preserve memory. 4 - 16 are
good values. flag = 0 to not compress the slot number;
and =1 to compress. The default is 1.

Setting PPP Options, Retry Counters

The following retry counters can be set:

par <iface> lcp|lcpin retry <configure>|<failure>|<terminate> <count>

par <iface> ipcp|ipcpin retry <configure>|<failure>|<terminate> <count>

iface is the name assigned to the interface.

configure is the number of configuration requests (default 20).

failure is the number of bad configuration requests allowed from peer (10).

terminate is the number of termination requests before shutdown (2).

count is the number of retries.

Setting PPP Options, Timeout Values - in milliseconds

par iface lcp|lcpin|ipcp|ipcpin|ap|apin timeout milliseconds

Setting PPP Options, Authentication - username/password

For PAP or CHAP authentication on PPP connections:

par iface ap user username password

22 Chapter 4, SOCKETS Configuration Commands

Setting PPP Options, Open - a specified layer

par iface lcp|lcpin|ipcp|ipcpin open

Start – an lcp connection
param iface lcp|lcpin start

When lcp is specified, a PPP connection is immediately initiated.

Listen – for an lcp connection
param iface lcp|lcpin listen

When lcpin is specified, a PPP connection is delayed until an incoming call is detected.

par, Alternative Routing Control Sub-commands

The Alternative Routing Control Sub-commands set up and check the SOCKETS
alternative route mechanism. More than one route can be specified to a target host or
network. The first route that has an associated interface in the up state is used.

An interface is in the up state when it is defined by the interface command. It enters the
query state when it does not receive valid input within a specified up-time period after
data expecting a response is sent.. At this stage three (catering for links with a high data
loss) ICMP echo requests (ping) are sent to a query IP address. It enters the down state
by a SOCKETS command or when it does not receive valid input within the specified up-
time period after entering the query state. If an up time has never been specified or a
value of 0 is specified, the interface will stay in the up state whether valid input is
received or not.

An interface enters the up state by a SOCKETS command or when valid input is received
on that interface while it is in the down or query states. An ICMP echo request is sent on
an interface in the down state every downtime period. If a downtime has never been
specified or a value of 0 is specified, the ICMP echo request is not sent. Up time and
downtime is specified in seconds.

Syntax
par ifname [uptime | downtime] time

par ifname query hostname

Options
Ifname

Ifname is the interface name of an asy interface.

Uptime
Uptime is the time to allow for no response on a defined connection.

Downtime

Downtime is the period of time to retry a defined connection.

Example Alternative Routing
Two SLIP interfaces are used to get to the target network 192.6.1.0. The first interface,
named if0 should preferably be used, but if it stops receiving for a period of 20 seconds,

Chapter 4, SOCKETS Configuration Commands 23

it should try to ping 192.6.1.2 and if no response is received within another 20 seconds,
if1 should take over, but if0 should be tried every five seconds. Interface if1 should
disconnect after 80 seconds of no traffic.

The SOCKET.CFG file should contain the following:
interface asy if0 slip
par if0 uptime 20
par if0 downtime 5
par if0 query 192.6.1.2
interface asy if1 slip
par if1 uptime 80
par if1 downtime 5
par if1 query 192.6.1.2
route add 192.6.1.0 if0
route add 192.6.1.0 if1

In the case of both if0 and if1 failing, both will retry every five seconds until one comes
up. The return paths should also be maintained in a similar way with SOCKETS or by
using RIP.

par, COM Port Speed and Flow Control Sub-command

This par sub-command allows the baud rate, flow control and data parameters to be set
and is only to be used on asy type interfaces.

Syntax
par ifname speed outflow inflow bits

Options
ifname

ifname is the interface name of an asy interface.

speed
speed sets the baud rate for a serial link. The standard speeds are: 150, 300, 600,
1200, 2400, 4800, 9600, 19200, 38400 and 57600.

outflow
outflow sets the output flow control for a serial link. When not supplied it defaults
to none.

inflow
inflow sets the input flow control for a serial link. When not supplied it defaults to
none. The following list shows outflow and inflow selections.

none no flow control

Xon Xmit on/Xmit off (Ctrl-Q, Ctrl-S)

DCD Data Carrier Detect modem signal

CTS Clear To Send modem signal

DSR Data Set Ready modem signal

DTR Data Terminal Ready modem signal

RTS Request To Send modem signal

ixxx inverse of modem signal xxx

24 Chapter 4, SOCKETS Configuration Commands

Invalid selections are ignored or replaced by more logical selections. The usage of
Xon/Xoff is not recommended for most applications. The ixxx support is for non-
standard equipment that uses a reversed signal on the required pin.

bits
bits sets the number of data bits per character, number of stop bits, and parity for a
serial link. It is a three-character string consisting of dsp from the following table.
When not supplied, bits defaults to value of 81n.

Values for d 5, 6, 7, or 8 data bits

Values for s 1 or 2 stop bits

Values for p o = odd parity
e = even parity
n = no parity
m = mark
s = space

Example
par asy1 57600 cts rts 81n
par slp0 4800 xon xon 72e

par, RIP Advertising Sub-command for Interfaces

When the RIP advertise command has been used, this par sub-command makes
allowance to disable and re-enable RIP advertising on a specific interface.

Syntax
par ifname [ripadv | noripadv]

Options
Ifname
ifname is the interface name of an asy interface.

Ripadv

Ripadv indicates to use route advertising on the defined interface.

Noripadv
Noripadv indicates to not use route advertising on the defined interface.

Examples
par if0 noripadv
par if1 ripadv

printer

The printer redirector operates by intercepting Interrupt 17 and passing printer output to a local or
remote print server. A print session is started when output is first sent to a specific port, and is
stopped after a user-specified period of no output. When a printer port is redirected, the IP address

Chapter 4, SOCKETS Configuration Commands 25

and TCP port number of the destination print server, in addition to the timeout period, is specified.
A printer port can both be used as a print server port and as a redirected port.

Syntax
printer printer_port timeout IP_address [TCP_port]

Options
printer_port

Printer port 0, 1, 2 or 3 to redirect. Port 0 corresponds with PRN, 1 with LPT2 and
so on. Serial printers can be defined with the SRPRINT.EXE TSR that forms part of
the SOCKETS package.

timeout
Timeout period in seconds for closing the TCP connection.

IP_address
IP address of print server host (could be the local host).

TCP_port
TCP port of print server (Default is 10).

Comments
To ensure proper queuing of remote and local print sessions to a local printer, the
printer port must be redirected to the local IP address and TCP port of the print
server using that port.

Examples
The IP address of print_host in the following example is defined in the HOSTS file.

printer 0 15 print_host
The following example uses printer port 1 (LPT2) for both local and remote
printing. (If the printer command is placed before start prntserv, SOCKETS will not
work correctly.)

ip address this_host
 .
 .
start prntserv 1010 1
printer 1 15 this_host 1010

RIP

The Routing Information Protocol (RIP) allows a SOCKETS gateway to advertise routes and
allows SOCKETS to recognize advertised routes from SOCKETS and other gateways. These two
facilities can be individually selected.

Syntax
RIP advertise [time [1|2] [self]]

RIP use [time]

26 Chapter 4, SOCKETS Configuration Commands

Options
time

time is the number of elapsed seconds before the advertisement is repeated when
used in the advertise sub-command.

time is the period during which routes are added or amended as a result of RIP, and
are valid for time seconds. Such added or amended routes are dropped if another
RIP advertisement is not received within time.

self
self advertises SOCKETS connection to the network.

RIP Advertise Sub-command

RIP advertise causes an immediate advertisement of all relevant routes and repeats it
every time seconds. The default value for time is 30 seconds. RIP version 2
advertisements are sent by default. To send only version 1 advertisements, add a 1 on the
command line.

When RIP advertise is selected, all interfaces advertise all routes except those routes
making use of that specific interface (split horizon) and routes marked Private. (To
prevent certain interfaces from using RIP, see the parameter command.) A route which is
dropped as a result of a RIP update or which becomes unavailable as a result of its
associated interface going into the down state, is immediately advertised as being infinite
(metric = 16) and is not advertised until it becomes available again. The advertisement is
sent as a sub-net broadcast using the net mask and IP address of the interface.

Example
RIP advertise 30 self

RIP use, Update RIP Sub-command

RIP use causes a RIP request for routes and a continuous update of routes according to
RIP advertisements. Routes added or amended as a result of RIP are valid for time
seconds and are dropped if another RIP advertisement is not received within that time.
The default value of time is 240 seconds.

When RIP use is selected, routes are updated according to received RIP advertisements.
Routes added or amended as a result of RIP, have a timeout associated with them. If
another RIP advertisement is not received during that time, the route is dropped. A route
is also dropped if an advertisement of infinity (metric = 16) is received. To prevent
dropping a route, it must be marked as Static.

On RIP and static routes: — The metric of a route marked static is never updated by a RIP
advertisement. Instead a duplicate route is added before the static route. If the duplicate
route is dropped as a result of a timeout or RIP, the static route is used again.

On RIP and mdd or x25 interfaces: — On mdd or x25 interfaces, a RIP route is only sent when the
last datagram was not a RIP route. This is done to allow an interface to time out and be
disconnected when not used.

Chapter 4, SOCKETS Configuration Commands 27

Also, the route on the receiving end still times-out and becomes unavailable. This means
that inactivity timers should be shorter than route timers; as specified in RIP use timer.

When an aslink to mdd association is broken, all non-static routes using the specific mdd
are marked as having a hop-count of infinity; the metrics are set to 16.

route

route creates an entry in the IP routing table for SOCKETS to determine where to send data. The
Alternative Routing mechanism allows more than one route to be specified to a particular host or
network. Failure of one route causes an automatic switch to the next route.

Refer also to the ip address command for specifying the net mask, because a route is automatically
added to each interface for the default or specified net mask for that address. When multiple
routes are defined to the same address, SOCKETS uses the route with the network size (largest
number of bits in the net mask).

Syntax (general)
route [add | drop destination ifname [gateid |none [metric [proxy] [private] [static]]]]

Syntax (specific)
route
route add [hostid | netid] ifname [gateid]

route add [hostid | netid[/mask]] ifname [gateid]

route add default ifname

route drop [hostid | netid]

route drop [hostid | netid[/mask]]

route drop default

Options
add or drop

Sub-command to add or drop (remove) a route from the routing table.

default
All transmissions to IP addresses not otherwise defined in routing commands are
sent via the network interface specified by ifname.

hostid
hostid is the IP address of a destination remote host to which data must be sent, or a
remote host that must be removed from the routing table (dropped).

netid
netid is the IP address of a destination network to which data must be sent. Any host
with this IP network address is able to receive the data. Whether a particular host
will use the data depends on the host portion of the specific IP address in the IP
header.

mask
mask specifies the number of bits in the network portion of the address if sub-netting
is used. If not used, the network portion of the address is determined according to
the class (A, B or C) of the address.

28 Chapter 4, SOCKETS Configuration Commands

ifname
ifname defines the name used in the interface command for the immediate network
on which the data for the designated host must be sent. This is the network level
interface to be used by the local host to reach the remote host.

gateid
gateid parameter specifies the IP address of a host, on the same physical network as
the local host, which is used as a gateway or router to a different network. The
gateway or router host specified in gateid must be directly reachable on the same
physical network as the local host defining this gateway. In other words, this must
be the nearest gateway to this local host.

metric
When using RIP or Proxy ARP a value from 0 to 16 for metric must be specified
indicating the distance or cost of that route. A metric of 16 indicates that the route is
down.

proxy, private and static
To support the Routing Information Protocol (RIP) the route command utilizes the
proxy, private and static key words. These words can be used in any order
following metric.

Proxy ARP should be used with care and not in conjunction with RIP. When more
than one host responds to an ARP request, it can cause confusion and even lead to
system crashes. This is possible in situations where more than one gateway
implements Proxy ARP to a common destination. See also ROM-DOS Developers’
Guide, “About TCP/IP” for more information.

When “RIP advertising” is selected, all interfaces advertise all routes except those
routes making use of that specific interface (split horizon) and routes marked
private. A route which is dropped as a result of a RIP update or which becomes
unavailable as a result if its associated interface going into the down state, is
immediately advertised as being infinite (metric = 16) and is not advertised until it
becomes available again. In order for an interface to be used for advertising, a route
without a gateway using that interface must be available. The advertisement is sent
as a sub-net broadcast using the net mask of the host and the IP address of the
interface.

When “RIP using” is selected, routes are updated according to received RIP
advertisements. Routes added or amended as a result of RIP, have a timeout
associated with them. If another RIP advertisement is not received during that time,
the route is dropped. A route is also dropped if an advertisement of infinity (metric
= 16) is received. To prevent dropping a route, it must be marked as static. The
metric of a route marked static is never updated by a RIP advertisement. Instead a
duplicate route is added before the static route. If the duplicate route is dropped as a
result of a timeout or RIP, the static route is used again.

Examples
route add default ipx0
route add unix_net eth0
route add unix_host ipx1 unx_gate
route add unix_net2 eth0 /eth 1
route add unix_ net ipx0 unx_ gate
route add subnet/26 eth0 sub_gw
route drop unix_net

route can specify a Proxy ARP on a route, as follows:

Chapter 4, SOCKETS Configuration Commands 29

route add net interface gateway metric [proxy]

When using Proxy ARP, gateway and metric must be specified. If no gateway is used,
none can be specified. For example:

route add 192.6.1.0 ifx25 none 5 proxy

start

start starts a SOCKETS Print server (prntserv) or LPD and makes it available for access by
remote hosts .

Syntax
start prntserv [port [printer_number]] [/m=mask] [/s=status] [/r=report] [/d=print_delay]

start lpd [printer_number] /n=printer_name [/m=mask] [/s=status] [/r=report]
[/d=print_delay] [/f]

Options
port

port is the TCP port to use (the default is 10)

printer_number
printer_number is a value of 0, 1, or 2 to correspond with LPT1(PRN), LPT2 and
LPT3. Any number up to 3 may be defined by the serial printer TSR (SRPRINT) as
a printer on a COM port. The default printer number is 0.

Note: Both LPD and prntserv may use the same printer.

printer_name
The name of the printer queue.

mask
Used to activate status reporting and cope with non-standard printer status reporting.

status
Used to activate status reporting and cope with non-standard printer status reporting.

report
Used to activate status reporting and cope with non-standard printer status reporting.

print_delay

A decimal number specifying the number of times a printer will be tested for busy
status before the busy status is accepted. This solves the problem that a single
character is sent to the printer every timer tick (55 milliseconds), resulting in
extremely slow printing by the print server. print_delay should be the lowest value
still permitting fast printing. The default value is 40 which works fine on a 33 Mhz
386 CPU. On a slower CPU the value can be less and on a faster CPU it may need to
be more.

/f
Send a form-feed (new page) to the printer at the end of the print job.

30 Chapter 4, SOCKETS Configuration Commands

Printer Status Reporting
Optional status reporting has been implemented to give print client implementations more
control over print jobs. The following print server enhancements have been enabled:

1. Optional status reporting to Print Client. The status reporting includes messages like:
Timeout
Last character has been sent to printer
I/O Error
Printer selected
Out of paper
Acknowledged
Printer Ready

2. Customization of printer status checking.

3. Print queue flushing.

Raw printer status bytes as defined for BIOS INT 17 services can be sent from the server
to the client on the established connection when:

1. The first data is being printed.

2. The status changes while attempting to print.

3. The last character in the stream (the character before the FIN) has been sent to the
printer. The unused bit Bit1 in the status is used to indicate this event.

The status byte is defined as follows:

Bit7 80h Printer ready

Bit6 40h Acknowledged

Bit5 20h Out of paper

Bit4 10h Printer selected

Bit3 08h I/O Error

Bit2 04h Unused

Bit1 02h Last character has been sent to printer

Bit0 01h Timeout

The status bits are returned by the Int 17 BIOS call (with the exception of Bit1) and are
not always consistent, but depend on the BIOS of the particular server.

The utility PRNTEST.EXE in the UTILS subdirectory checks the response from the
selected parallel port where LPT1 = 0; LPT2 = 1 and LPT3 = 2. Start PRNTEST.EXE 0
to test LPT1 for example. PRNTEST shows the returned BIOS code from the printer
port.

 To print successfully, three conditions must be met: 1) the printer must be selected, 2)
be ready, and 3) contain paper.

Sum the hexadecimal values for these conditions and use that as the /s and /m parameters
for the start prntserv commands. The default values used are /mA8 for the mask and /s80
for the status which implies that data is sent to the printer when it is not busy and out -of-
paper, or I/O Error status is not set. Printer selected is ignored as this status bit is often
not reported correctly. To include the printer selected bit, specify /mB8 and /s90.

Example
start prntserv 10 0

Chapter 4, SOCKETS Configuration Commands 31

Notes on SOCKETS printing
The socket print server accepts TCP connections and routes output to one of four system
printers on a parallel port or serial port. Up to four print servers can be started on
different TCP ports, connecting to different printers. The server accepts multiple calls,
but prints strictly in order of received calls. This means that a connection must be closed
to allow another client to print, thereby providing print queuing. There is no indication of
queuing status, so a non-ready printer will not hang SOCKETS. Other operations are not
affected.

The print server is instructed to send status bytes in the start prntserv command by
specifying an optional argument /r=report where report is a hexadecimal value specifying
the status bits which are checked for changes to initiate a report. (A report is always sent
at the beginning of a job.) The default value is 0 that means that the print server will not
report any status changes. A logical value to use is /r=3F which causes any changes,
except Printer ready and Acknowledged, to be reported. (The Acknowledged bit is not
useful in this application because it toggles at each character; too fast for most networks
to carry all the generated traffic.) Note that the full printer status byte is transmitted
without filtering any bits.

Notes on printing
Provision is made for non-standard status responses from printers. The mask specifies a
hexadecimal value to perform a logical AND operation with the status indication from
the printer and status is the hexadecimal value of the result which causes the printer to
print. These options are only used locally at the server and the result is not passed on to
the client. Change these options only when error conditions (for example, printer
switched off or printer off-line) causes output to be lost. The default values used are
0xA8 for the mask and 0x80 for the ready status which implies that data is sent to the
printer when it is not busy and Out of paper or I/O Error status is not set. Note that
Printer selected is ignored as this status bit is often not reported correctly. To include the
Printer selected bit, specify /m=B8 and /s=90.

The SOCKETS utility PRNTEST.EXE can be used to test the status returned by a
specific printer.

tcp

tcp commands display or set various TCP operating parameters.

Syntax
tcp ackonpush 1

tcp irtt [time]

tcp lport [port_number]

tcp mss [size]

tcp retry [number]

tcp rtt [time]

tcp smss [size]

tcp timemax [time]

tcp window [size]

32 Chapter 4, SOCKETS Configuration Commands

Options
time

time is the new time value in seconds, or milliseconds if “ms” is appended to the
number, as in 2000ms.

port_number
port_number is the local port starting number.

size
For tcp mss, size is the maximum segment size in bytes sent on all outgoing TCP
connect requests (SYN segments). size tells the remote host the size of the largest
segment that may be received by this host. When changing the MSS value, any
existing connections remain unchanged.

For tcp smss, size is the send maximum segment size in bytes sent on all outgoing
TCP connect requests. This limits the size of the largest segment that may be sent
by this host. When changing the SMSS value, any existing connections remain
unchanged.

For tcp window, size is the size of the receive window in bytes for any new TCP
connections. Existing connections are unaffected.

number
number is the number of retries attempted without receiving an acknowledgement
from the remote host before the connection is broken. If the value exceeds 255, it
implies an infinite number of retries; such a connection does not time-out. The
default value for number is 6.

tcp ackonpush Sub-command
tcp ackonpush disabled “Delayed ACK”. Normally TCP acknowledment should occur as
RFC1122 states:

“4.2.3.2 When to Send an ACK Segment

A host that is receiving a stream of TCP data segments can increase efficiency in both the
Internet and the hosts by sending fiew than one ACK (acknowledgment) segment per
data segment received; this is known as “delayed ACK” [TCP:5].

A TCP SHOULD implement a delayed ACK, but an ACK should not be excessively
delayed; in particular, the delay MUST be less than 0.5 seconds, and in a stream of full-
sized segments there SHOULD be an ACK for at least every second segment.”

The purpose of using “delayed ACK” is to decrease the amount of traffic generated on a
TCP connection. In certain applications a delayed ACK can lead to a slower response.
The user can now disable the “delayed ACK” functionality by using this command in the
SOCKETS configuration file.

ACKONPUSH can be abbreviated to ACK.

Example
tcp ackonpush 1
tcp ack 1

Chapter 4, SOCKETS Configuration Commands 33

tcp irtt Sub-command

tcp irtt displays or sets the initial round-trip-time estimate. When specified without an
argument, the command displays the current values of TCP parameters including the
initial round-trip-time in milliseconds.

time is the initial round-trip-time (IRTT) estimate and is used for new TCP connections
until the actual value can be measured and adapted to. By increasing this value when
operating over slow communication links, unnecessary retransmissions that otherwise
occur before the smoothed estimate value approaches the correct value are minimized.
The system default is 5000 milliseconds.

To affect incoming connections, tcp irtt should be executed before the servers are started.

Example
tcp irtt 120

Sample Output
TCP: IRTT 5 ms Retry 6 MSS 1460 SMSS 1460 Window 2920

tcp lport Sub-command

tcp lport specifies the local port starting number. When specified without a number the
current value of the next free local port number is displayed.

Example
tcp lport 2004

Sample output
lport = 2004

tcp mss Sub-command

tcp mss displays or sets the TCP maximum segment size in bytes. When size is not
specified, the current values of the TCP parameters, including the maximum segment
size, are displayed. It is recommended to reduce the MSS and SMSS on bad network
connections. The SOCKETS queuing overhead is 12 bytes per WriteSocket request i.e.
you will need 52 bytes for each request. It will queue 2*MSS bytes for you if it can't send
right away because of window constraints by the peer or the Nagle heuristic. That means
that if your MSS is set to the default of 1460, 2920 bytes will be queued, consuming 3796
bytes in your case. If you have 5 connections, you need 18980 bytes just to buffer your
outgoing data. Use IPSTAT to determine how much memory you have available for
everything. (You need memory for each connection, incoming data and all other TCP
functions).

Example
tcp mss 1460

tcp retry Sub-command

34 Chapter 4, SOCKETS Configuration Commands

tcp retry displays or sets the retry count before a connection is broken. When specified
without the number parameter, tcp retry displays the current values of TCP parameters,
including the retry count. Refer also to “TCP Retry Strategy” on page 101.

tcp rtt Sub-command

tcp rtt replaces the automatically computed round-trip time (RTT) for the specified
connection with the time in milliseconds. SOCKETS calculates the RTT as a smooth
average of past measured RTTs, starting with the IRTT on a new connection. To get the
current RTT in use for a connection n, use the tcp status n command that gives the
smoothed average RTT indicated by SRTT. Because tcp rtt provides a manual override
of the normal back-off retransmission timing mechanisms, it may be used to speed up
recovery from a series of lost packets.

Example
tcp rtt 4 100

tcp smss Sub-command

tcp mss displays or sets the TCP send maximum segment size in bytes. When size is not
specified, the current values of the TCP parameters, including the SMSS, are displayed.
A small SMSS causes the remote to reduce its segment size. tcp mss can reduce the MSS
and SMSS on bad network connections with high loss rates or where large packets get
lost.

Example
tcp smss 512

tcp window sub-command

tcp window displays or sets the default and maximum receive window size. When
specified without the size parameter the current TCP parameters, including the current
window size, are displayed.

Example
tcp window 2920

tcp timemax Sub-command

tcp timemax sets the maximum duration of a tcp retry. If a value greater than 255
seconds is specified, connections never timeout. This is very useful in wireless
applications where nodes roam in and out of service.

Example
tcp timemax 2000ms

Chapter 4, SOCKETS Configuration Commands 35

SOCKETS command line options
The command line options for SOCKETM and SOCKETP are identical.

Syntax
Socketm [/options…] [config_file [arguments_for_ config_file…]]

Options
/?

/0

/a

/n=normal_sockets

/i=capi_interrupt

/d=dos_compatible_sockets

/h

/m=memory_size

/p

/s=stack_size

/v=api_interrupt

/q

/u

config_file
The configuration file to use.

If config_file is omitted, SOCKETS searches the following paths:
%SOCKETS%\DOS\SOCKET.CFG
%SOCKETS%\SOCKET.CFG
SOCKET.CFG

If the SOCKETS environment variable is not set, %SOCKETS% above defaults to
\DL\SOCKETS

arguments_for_ config_file
Can be used to replace %1 to %9 in the configuration file. It is often used to set the
IP address or other variable parameters in the configuration file. It can also be used
to simplify many functions.

/?
/h

Displays help about command line options.

/0
Instructs SOCKETS to not attempt to save and restore the extended register set of an
80386 processor. This is the only 386-specific code in SOCKETS/DOS, and
disabling it makes SOCKETS/DOS fully 80186 compatible.

/a
Instructs SOCKETS to enable the reception of Multicast packets by the Packet
Driver. Use this when using multicast functions.

36 Chapter 4, SOCKETS Configuration Commands

/n=normal_sockets
The number of normal sockets to reserve for use by the Compatibility API. If that
API is not needed or no normal socket function is used, set this to 0. This value
defaults to 8 i.e. /n=8.

/d=dos_compatible_sockets
The number of DOS compatible sockets to reserve for use by the Compatibility API.
If that API is not needed or no DOS compatible function is used, set this to 0. Note
that the TCP/IP SOCKETS API (BSD) does not use any DOS compatible sockets.
This value defaults to 12 i.e. /n=12.

/i=capi_interrupt
The compatibility API uses interrupt 61hex i.e. /i=61 To change it to a different
value, specify the value in hexadecimal eg. /i=62.

/v=api_interrupt
The SOCKETS API normally uses interrupt 7Fh i.e. /v=7fTo change it to a different
value, specify the value in hexadecimal eg. /v=7e.

/m=memory_size
Specifies the working memory or heap size for SOCKETS and has a default value of
16384 (16KB) for SOCKETP and 22528 (22KB) for SOCKETM. Increase this
value if IPSTAT shows Memory allocation failures during operation.

/p
Sets the minimum size for allocation requests from packet drivers to 64 bytes. Some
packet drivers request a specific amount of memory, but proceed to write a
minimum of 64 bytes to the allocated memory space.

/s=stack_size
Specifies the stack size used by SOCKETS and has a default value of 2048 (2k).
Increase this value if problems are experienced when using nested Async
Notification handlers.

/q
Load SOCKETS without displaying any startup messages or diagnostics.

/u
Run SOCKETS with the /u switch to unload it from memory. If another program has
taken over the interrupts SOCKETS has hooked, SOCKETS just disables itself when
the /u switch is used.

Modem Configuration File Syntax
A modem configuration file is a text file containing lines defining modem “scripts” defining the
operation of a modem to make and receive calls. A modem configuration file can be given any
name which is referenced in the interface command.

A modem configuration file consists of separate commands lines, each starting with one of the
following characters in the first column:

 i initialisation string/script (for the modem)

m time modem pacing - send a script character to modem every time milliseconds.
Default is 55 ms. Use m 0 for no pacing.

n telephone number to dial (one number per line)

Chapter 4, SOCKETS Configuration Commands 37

 r retry_count (when a connection or script failed)
 x exchange_id (XID for user identification)
 d dial command/script (talk to modem till connected)
 a answer prompt script (to remote for him to login)
 c connect string/script (to remote for me to login)
 p parameters (for debugging/watching and dial control)

t time timeout value - Lower DTR for time milliseconds to disconnect modem.
Default is 10,000 milliseconds.

 b command_character (default is @ in this syntax)
 # comments (what all good programmers do)

The initialisation strings, answer prompt, connect string and dial commands consist of modem
and login commands or prompts and special functions to cause delays and wait for DCD or
strings. The simple scripts are one line strings where commands start with the
command_character (default is @) followed by a script command, followed by a time in
milliseconds (and a receive search string in the case of @r). The following script commands can
be used:

@t time
@w time wait for the full time specified
@d time wait for DCD (modem to get connected)
@f time wait for ^F XID ^M and find mdd with the matching XID
@a time wait for IP Address (anywhere in data stream) and use it as your own

for this interface
@r time string@ wait for time to receive string
time@.string@ terminate time if followed by a string starting with digits
string send string to modem/remote (default in all scripts)
@n insert telephone number (used in dial string)
@x insert XID (used in connect string)
@@ send command_character (@) to modem/remote

Note:
• The time is given in milliseconds and is terminated by the first character that is not a

decimal digit. Maximum time is one hour (3 600 000ms).

• The script is aborted when a conditional wait times out, without making the connection.

• Receive strings (@r) are terminated with a command_character (@).

• Send strings are terminated with the next command or the end of a line. A carriage return
character (CR) is not automatically added.

• To put control characters in the string use ^n where n is A for 0x01, B for 0x02 and so on. A
CR is ^M and a LF is ^J. Use ^SPACE to send the ^ character to the modem.

• Do NOT include spaces as separation characters since all characters are interpreted.

• The @'s are strictly interpreted from left to right - do not confuse them with terminating and
initiating @'s. After @r, a terminating @ must follow. An initiating @ for the next
command MUST be given - it is not automatically assumed since a send string is implied
by default.

38 Chapter 4, SOCKETS Configuration Commands

Example
 @w1000 wait for 1 second
 @d30000 wait for DCD, retry dial after 30 seconds.
 @@ send @ to modem/remote
 atdt@n^M^J dial the next number in the list
 @r2000login@ wait for the string "login"

parameters comprise an optional string specifying whether dial communications must be
displayed and how it must be controlled. Use x to display transmit data and r for received
data. The display is only active while DCD is low. Use d to always dial when DCD is or
becomes low. Use n for no dial on demand. Note that d and n are mutually exclusive.

An example or two is the fastest way to understand the explanations above. For a simple
connection where no passwords or identity checks are needed, try the following:

Modem definitions for Zoltrix Hayes compatible modem
This example is for 'asy' interfaces making outgoing
connections with no logon sequence.

initialisation string
(Warning: consult the manual for your own modem)
send "a", wait half a second, send "a", wait half a second,
send "ats0=0" - do not use auto answer
send "&c1" - use state of carrier for DCD
send "&d3" - disconnect when DTR low
send "&k3" - enable RTS/CTS flow control
send "&q5" - select error correction
send "<CR><LF>", wait 100 milliseconds
i a@w500a@w500ats0=0&c1&d3&k3&q5^M^J@w100

dial command - send "<CR><LF>", wait 2 seconds
send "atdt<number><CR><LF>"
wait 30 seconds for DCD
d ^M^J@w2000atdt@n^M^J@d30000

two numbers to dial in rotation
n 790-1234
n 790-1235

parameters: r=show modem receive, x=show modem xmit
p r

number of retries
r 5

A more typical login sequence (where a user ID and password is required) will use the
connect script as in this example:

Chapter 4, SOCKETS Configuration Commands 39

modem definitions for US Robotics Hayes compatible modem
send "a", wait a tenth of a second
send another "a", wait a tenth of a second,
send "at&c1" - use state of carrier for DCD
send "&d3" - disconnect when DTR low
send "&i0&r2&h1" - enable RTS/CTS flow control
send "&m4" - select error correction
send "s0=0" - do not use auto answer
send "<CR><LF>", wait 100 milliseconds
i a@w100a@w100at&c1&d3&i0&r2&h1&m4s0=0^M^J@w100
number to dial
n 03456789
number of retries
r 4

dial command - send "<CR><LF>", wait 1 second
send "atdt<number><CR><LF>"
wait 40 seconds for DCD
d ^M^J@w1000atdt@n^M^J@d40000

connect script - wait 7 seconds for login prompt
send user ID, wait 2 seconds for password prompt
send password, wait 2 second for acknowledgement
c @r7000ogin@myuserid^M@r2000sword@mypassw^M @r2000Welcome@
parameters: r=show modem receive, x=show modem xmit
p rx

Note that the '@m's in the above connect string are not commands since the @ is interpreted
as the end of a @r 'wait for receive' string. Sometimes you would have two @'s like this
example: Should you want to put a small delay before replying to a prompt it would contain
@@ as follows:

 c @r7000ogin@@w100myuserid^M

For receiving incoming calls, the answer command/script is used. You can use it to do a
single user ID/password controlled login, just a user ID login, or unconditional acceptance.
The more general case is to use mdd interfaces with an XID (exchange ID) to validate
multiple users. Examples for using Multi Destination Drivers (MDD) are given below. If
your SOCKETS workstation accepts only incoming calls, you do not need to enter dial
commands.

Retry Strategy on Time-out

For outgoing calls, when a wait for DCD (@d) times out without receiving DCD, SOCKETS will
drop the call (by lowering DTR). If the number of retries has not been exhausted, SOCKETS will
retry the dial command with the next phone number rotating through the list of numbers. If a
connection with the remote modem is successful (received a DCD) and there is a timeout on the
wait for string command in the connect script, the connect script is re-started for the number of
retries specified. If the number of retries has been exhausted, SOCKETS will retry the dial and

40 Chapter 4, SOCKETS Configuration Commands

connect commands only after being prompted again by receiving traffic for this destination host or
net.

For incoming calls, when there is a time out on the wait for XID or string commands, the answer-
prompt script is re-started for the number of retries specified. If the number of retries has been
exhausted, SOCKETS will drop the call (by lowering DTR).

Multi Destination Drivers

When you have more than one destination to or from dial-up links using SLIP, and are using more
than one modem, you need a mechanism to link the logical interface (with IP address and routing
info) to the physical interface (COM port with modem definitions). Using an asy type interface
permanently links the logical and physical interface with one IP address. This works OK for
dialling out to multiple destinations only where you are the end user and nobody routes through
you.

Two interface types - mdd and aslink - have been defined to enable dial-up operation to other
networks using SLIP.

• mdd defines a logical interface with associated IP address, routes, MTU, buffer limit and
a modem configuration file but without a physical interface. For each dial-up destination
a mdd interface is created, and a route to each destination specified.

• aslink interface defines an uncommitted asynchronous interface with an associated COM
port as specified by the I/O address, and interrupt vector.

When initial traffic is to be sent to a destination through a mdd interface, SOCKETS scans all
aslink interfaces for the first available one and assigns it to the mdd interface. This association is
broken when the dial connection is broken or when the dial attempt fails. A dial attempt fails when
the retry count specified in the modem file expires.

Incoming calls can be received on any aslink interface. This interface must then be associated
with the correct mdd interface (and IP address with route) for the calling host. An exchange
identifier (XID) defined by both the calling host and the called host achieve this.

The protocol for exchanging the XID is implemented partly by SOCKETS and partly by the user
defined 'connect' and 'answer' scripts in the modem configuration files. When an incoming call is
received by an aslink interface, as seen when DCD is raised, the 'answer' script is executed. This
script must contain a command to wait for the XID and match it to a local mdd containing the
same XID and an acknowledgement to the sender that the exchange has been successful. The XID
must be preceded by an ACK (^F) and followed by a CR (^M). The 'connect' script of the calling
host is used for this purpose. The following ‘answer’ and 'connect' scripts may be used:

 a @w100^M^JYour ID?@f1000ccc

This means: Wait for 100 milliseconds (after receiving the DCD) send a CR/LF to write on a new
line and prompt the user with 'Your ID?’ Wait 1 second to receive a valid XID matching with an
mdd interface and then send a few 'c's to acknowledge 'connected' for the caller.

Chapter 4, SOCKETS Configuration Commands 41

 c @r500ID?@^F@x^M@r500c@

This means: Wait half a second to receive the 'ID?' prompt, send the required ACK (^F), XID
(@x) and CR (^M). Wait another half second for acknowledgement from the remote with a 'c'.

It can occur that a request for making an outward connection and an attempt by an incoming
connection clash at the same mdd interface. One example is when a connection is broken and
both sides redial each other to restore the connection. A mechanism must be used to allow only
one of the attempts to be successful. Therefore a mdd interface will drop an aslink trying to make
an outgoing connection as soon as it senses another aslink trying to connect to it with an incoming
connection.

In summary the modem commands used by the mdd and the aslink in their respective modem
files for the following functions are:

• For initiating the modem: Always use the 'i-' command in the aslink modem file.

• For making a call: Use the telephone numbers from the n-command in the mdd modem
file, select any available aslink , and use its d-command. When the modems are
connected, use the c-command in the mdd modem file to logon with its XID (x-
command).

• For answering a call: Use the a-command in the aslink modem file to query the user for
his XID (logon sequence), find the mdd modem file with the matching XID (x-
command).

More examples are available in the HAYES.MOD file. See the command descriptions in the
Modem Configuration File Syntax section above.

Example
An mdd modem configuration file for both incoming and outgoing connections:
n 790-1234
n 790-1235
x id-abc
c @r20000ID?@^F@x^M@r500c@
r 5

An aslink modem configuration file for both incoming and outgoing connections:
i a@w500a@w500ats0=1&c1&d3&k3&q5^M^J@w100
a ^M^JYour ID?@f5000@w200ccc
d ^M^J@w2000atdt@n^M^J@d30000
r 5

Example
An aslink modem configuration file for incoming connections:

i a@w500a@w500ats0=1&c1&d3&k3&q5^M^J@w100

42 Chapter 4, SOCKETS Configuration Commands

a ^M^JYour ID?@f5000@w200ccc
r 5

An mdd modem configuration file for incoming connections:
x id-abc

Example
An mdd modem configuration file for outgoing connections:

n 790-1234
n 790-1235
x id-abc
c @r20000ID?@^F@x^M@r500c@
r 5

An aslink modem configuration file for outgoing connections:

i a@w500a@w500ats0=0&c1&d3&k3&q5^M^J@w100
d ^M^J@w2000atdt@n^M^J@d30000
r 5

Configuration Considerations

MTU (Maximum Transmission Unit)

The MTU is the maximum size in bytes of a data packet (including all IP and TCP header
information.) Information is sent across the Internet in packets, which are reassembled into a
whole when they reach their destination. The size of these packets is dependent on the MTU of
the machines along the route the packets travel.

The MTU can be specified by each individual computer. When you send out a request for
information, the computer you are are requesting information from will read your request and
hopefully send out packets of the size that you request. If the destination machine has a smaller
MTU, the packets will be broken into pieces, or fragmented.

MSS (Maximum Segment Size)

MSS is the maximum size in bytes of the data portion of a TCP/IP packet This value is normally
the MTU setting minus 40. MSS is used by SOCKETS to determine the WriteSocket queue size.
The SOCKETS queuing overhead is 12 bytes per WriteSocket request so you will need 52 bytes
for each request. SOCKETS will queue 2*MSS bytes if it can't send right away because of
window constraints by the peer or the Nagle Algorithm. This means that if your MSS is set to the
ethernet default of 1460, 2920 bytes will be queued, consuming 3796 bytes with overhead per
connection. If you have five connections, you need 18980 bytes just to buffer your outgoing data.
Use IPSTAT to determine how much memory you have available. (You need memory for each
connection, incoming data, and all other features of the TCP/IP stack).

Chapter 4, SOCKETS Configuration Commands 43

Buffers

Buffers are used to store data packets that are sent and received. The size of each buffer is
determined by the MTU setting. Additionally, SOCKETS adds an additional 12 bytes for each
WriteSocket request. The maximum amount of memory required for buffers is determined by the
following formula

Maximum Buffer Memory Use = MTU * Buffers

A buffer limit of 30 is excessive if you have 1500 byte buffers (1500 * 30 = 45000). By default,
SOCKETS allocates 20000 bytes, which is used for a lot of other processes as well, so you are
bound to encounter out-of-memory situations. If you set MTU to 1500, then 5 would be a
recommended setting for the number of buffers.

Chapter 5, SOCKETS Configuration Examples

The following examples within this chapter refer to specific files, such as “EXAMPLE1.CFG” and
“MODEM.MC2”. These example files can be found in the \SOCKETS\CONFIGS directory
created during the install process.

• Ethernet connection with SOCKETS acting as a server to a Win9X or NT system. The
DL web server can be launched and a standard desktop browser will “surf” to the
SOCKETS system.

• Dial-Up serial connection to an ISP.
• Single Dial-In Connection.
• Single Dial-In connection with ASY interface.
• Direct serial connection with SOCKETS as a server.
• Direct serial connection with SOCKETS as a client.
• Dial-up slip connection with SOCKETS as an IP router.
• Multiple dial– in connections.

Example 1: Ethernet Connection – SOCKETS Serving a Web Page

SOCKETP is loaded from the command line as follows:

 SOCKETP.EXE EXAMPLE1.CFG

To demonstrate the web interface, next launch HTTPD.EXE. If the index file is not within the
current directory please remember to set the environment variable HTTP_DIR to the location of
the index files or nothing will be displayed to the desktop browser.

 SET HTTP_DIR=C:\DL\SOCKETS\SERVER

 HTTPD.EXE /R

The configuration file EXAMPLE1.CFG contains:

Ip address 196.6.1.111/24 Sets an IP address of 196.6.1.111 with a 24-
bit subnet mask to the following interface.

Iface pdr if0 dix 1500 5 0x60 Creates a standard Ethernet connection, type
pdr (packet driver), interface name if0, type
dix, MTU 1500, Buffer Limit 5, Interrupt
vector of the packet driver at 0x60.

route add default if0 196.0.0.1 Set the default route for packets travelling to
and from if0 to 196.0.0.1

domain server 196.0.0.1 Set the domain name server to 196.0.0.1
This server is used to convert names to IP
addresses.

ip address Cause SOCKETS to display IP status

46 Chapter 5, SOCKETS Configuration Examples

set TCP parameters
tcp window 2920 Set the windows size to 2920 bytes
tcp retry 6 Set the retry count to 6
tcp irtt 500ms Set the Initial Round Trip Time to 500ms
tcp mss 1460 Set the Maximum Segment Size to 1460

bytes

Example 2: Serial Connection – SOCKETS Dial-up to ISP

SOCKETM is loaded from the command line as follows:

 SOCKETM.EXE EXAMPLE2.CFG

The configuration file EXAMPLE2.CFG contains:

interface asy p0 ppp 576 10 0x3f8 4
19200 modem.mc2

Creates an asynchronous ppp connection on
COM1 IRQ4 named p0 with an MTU of 576
and buffer limit of 10. Uses the file
modem.mc2 for modem configuration
information.

route add default p0 Route all packets through interface p0
ip ttl 64 Set time to live for packets at 64 “hops”
tcp mss 1460 Set Maximum Segment Size to 1460 bytes
tcp window 2920 Set Windows Size to 2920 bytes
par p0 ipcp local compress tcp 16 1 Enables header compression, where 16 are

the maximum number of concurrent TCP/IP
connections. 1 turns on compression, 0 turns
off compression.

par p0 ipcp local address 0.0.0.0 Server assigned IP address
par p0 lcp local accm 0 Asynch control character map set all bits to

zero.
par p0 lcp local acfc on Address control field compression on or off.
par p0 lcp local pfc on Protocol field comp ression on or off.
par p0 lcp local magic on Magic number option on or off. The magic

number is used to detect loop back links by
creating a number, sending a configure
request, then comparing the number received.
If it is the same then there is a possible loop
back, repeat test.

par p0 pap user test example Set the user name to “test” and password to
“example”

par p0 ipcp open
par p0 lcp open

Open specified layer. ipcp = ip control
protocol.
Lcp = link control protocol.
When an immediate dial operation is
required the "par if0 lcp start" command
should be used. When dial-on-demand is
desired the “par if0 lcp open" command
should be used and when connect-on-

Chapter 5, SOCKETS Configuration Examples 47

received-call is desired, the "par if0 lcp
listen" command should be used. The start
command imp lies the open command and
the open and listen commands may both be
used. Dial-on-demand can also be disabled
by the "p n" modem configuration file
parameter and by an API call. Dial-on-
demand can be enabled by an API call.

MODEM.MC2

i A@w100atdt^M^J@w100 Initialise modem
d
^M^J@w2000ATDT@n^M^J@d40000

Dialling string

n 123-4567 Number to dial
r 3 Number of retries
p rx Enable debugging output to screen

Example 3: Single Dial-in Connection

Allow only single users to dial in and issue each with an IP address on the fly. Setup asy
interfaces, each with its own IP address, COM port, modem and telephone number. In the answer
script, a password may be asked (no need for XID: does it in the script), and on success an IP
address is sent in dotted decimal form. (Should you want to use different passwords, an
mdd/aslink setup as described in Example 2 may be used, but then every user will have his own
IP address fixed to the XID.)

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

The configuration file EXAMPLE3.CFG contains interface configurations for all modem ports as
well as other connections (like Ethernet) that might be used. An asy interface could be:

IPAddress=192.6.3.1/30 Set the IP Address of the following

interface to 192.6.3.1 with a subnet
mask set to 30 bits.

iface asy sl0 cslip 576 10 0x3F8 4 19200
modem.mc3

An asy modem connection on
COM1 connecting to the smallest
subnet allowing 2 hosts.

48 Chapter 5, SOCKETS Configuration Examples

The modem definition file is MODEM.MC3:

i
a@w100atz^M^J@w500ats0=1^M^J@
w100

Initialise modem (consult the manual
for your own modem initialisation
string)

x 192.6.3.2 Specify IP address (in the XID
variable to make the answer scripts
more uniform).

a @w1000^M^JPassword?
@r9000Sockets@@w200^M^JYour
address: @x ^M^J@r1000GOTIP@

Answer script to prompt remote for
logon:
Wait 1 second, send "<CR><LF>" to
get cursor on a new line, send
"Password? " and wait 9 seconds to
receive "Sockets" somewhere in the
data stream # (the connection will
break if failed), wait 200 milliseconds
and send the IP address with @x on a
new line. Wait 9 seconds to receive
"GOTIP" as confirmation.

p rx Parameters for debugging (show
modem data):
r=receive and/or x=xmit

Example 4: Single Dial-in Connection with ASY Interface

A user who dials into the system in Example 3 which supplies the IP address for the user, has to
use an asy interface to his modem. The user must specify the @a address command in the connect
script in the modem file. The @a time command waits for time milliseconds to see the dotted
decimal form of an IP address. It assigns this address to the asy interface. The user should have a
default route to this asy interface to be able to see the whole world through it, or just a specific
route for what he wants to see. The configuration file SOCKET4.CFG should contain at least the
asy interface configuration similar to the previous examples.

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

The modem definition file is MODEM.MC4:

i
a@w100atz^M^J@w500ats0=0^M^J@
w100

Initialise the modem (consult the
manual for your own modem
initialisation string).

Chapter 5, SOCKETS Configuration Examples 49

d ^M^J@w2000atdt@n^M^J@d40000 Dial command
n 0800123456 Number to dial
r 5 # Number of retries
c
@r7000sword@Sockets^M^J@a1000G
OTIP

Connect script to login at the
remote: wait 7 seconds after DCD to
receive password prompt, send
"Sockets" as password, wait 1
second for IP address, send
"GOTIP" as confirmation.

p rx Parameters for debugging (show
modem data):
 R=receive and/or x=xmit

Example 5: Direct Serial Connection with SOCKETS as a Server

This section explains how to configure SOCKETS as a server to listen on the designated serial
port and wait for a valid connection and use standard dial up networking to connect.

The Client Connection

There are two methods of connection available - direct serial connection or dial in on a standard
phone line. The Client here can be any Win95, Win98, or WinNT system.

For a direct serial connection a modem driver must be installed. Such a driver does not ship
standard with SOCKETS but can be obtained as freeware at http://www.aeriden.com. The client
must then create a dial up networking connection with the phone number of CLIEN1, no username
or password. Please read the manual distributed with the aeriden driver to ensure correct setup.

Configuring SOCKETS

Configuration of the SOCKETS software is handled within two files, namely EXAMPLE5.CFG
and MODEM.MC5. SOCKETS can be loaded by means of a batch file that contains the following
commands:

SOCKETM EXAMPLE5.CFG

These commands allow SOCKETS to allocate more memory, than allowed by the default values,
when initiating a TCP/IP connection over a serial link. SOCKETS processes the
EXAMPLE5.CFG file followed by the MODEM.MC5 file.

SOCKETS Configuration File Details

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP

50 Chapter 5, SOCKETS Configuration Examples

parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

EXAMPLE5.CFG contains:

iface asy if0 ppp 576 5 0x2f8 3
19200 modem.mc5

Creates an asynchronous connection on
com 2, IRQ 3 with a Baud rate of 19200,
MTU of 576, and a Buffer Limit of 5.
Access the modem.mc5 file for specific
initialization strings.

User SocketsUser SocketsPassword
196.10.229.18

For user connecting with name
“SocketsUser” and Password
“SocketsPassword” assign the ip address
of 196.10.229.18

par if0 ipcpin local compress tcp
16 1

Enables header compression, where 16 are
the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns off compression.

par if0 ipcpin local address
196.10.229.2

par if0 ipcp local compress tcp 16
1

Enables header compression, where 16
are the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns off compression.

par if0 ipcp local address
196.10.229.4

par if0 lcpin local accm 0 Asynch control character map, set all bits
to zero.

par if0 lcpin local acfc on Address control field compression on or
off.

par if0 lcpin local pfc on Protocol field compression on or off.
par if0 lcpin local magic on Magic number option on or off. The

magic number is used to detect loop back
links by creating a number, sending a
configure request, then comparing the
number received. If it is the same, and
then there is a possible loop back, repeat
test.

par if0 lcpin local authen pap Set local authentication to pap
par if0 lcp local accm 0 Asynch control character map set all bits

to zero.
par if0 lcp local acfc on Address control field compression on or

off.
par if0 lcp local pfc on Protocol field compression on or off.
par if0 lcp local magic on Magic number option on or off. The

magic number is used to detect loop back
links by creating a number, sending a
configure request, then comparing the

Chapter 5, SOCKETS Configuration Examples 51

number received. If it is the same, then
there is a possible loop back, repeat test.

Par if0 ipcp open
Par if0 ipcpin open
par if0 lcp listen
par if0 lcpin listen

Open specified layer. ipcp = ip control
protocol.
Lcp = link control protocol.
When an immediate dial operation is
required the "par if0 lcp start" command
should be used. When dial-on-demand is
desired the “par if0 lcp open" command
should be used and when connect-on-
received-call is desired, the "par if0 lcp
listen" command should be used. The start
command implies the open command and
the open and listen commands may both
be used. Dial-on-demand can also be
disabled by the "p n" modem
configuration file parameter and by an
API call. Dial-on-demand can be enabled
by an API call.

route add default if0 Route all packets through interface if0
ip address
route

Prints out the systems ip address and
route. Useful for debugging only.

MODEM.MC5

 Initialize Modem. For a direct serial
connection no initialization string is
necessary.

a
@r20000CLIEN1@CLIENTSERV
ER

When Sockets receives the string
“Clien1” send the response
“ClientServer”

r 3 Number of Retries
p rx Debugging information parameters:

 r=show modem receive, x=show modem
xmit
 d=always dial, n=no dial-on-demand

Example 6: Direct Serial Connection with SOCKETS as a Client

Setting the Server

The NT server must have Remote Access Services enabled, commonly referred to as RAS, as well
as the "Direct Serial cable between two PCs " modem driver installed on the proper COM port.
The following example also connects using DHCP. If this feature is to be used then DHCP
services must also be setup on the NT server. Other options would include the use of static IP
addressing or BOOTP. Please review the cabling requirements from the WinNT documentation or

52 Chapter 5, SOCKETS Configuration Examples

help files. Standard cables often will not work with direct connections due to the cabling demands
of WinNT.

Configuring the Software

Configuration of the SOCKETS software is handled within two files, namely EXAMPLE6.CFG
and MODEM.MC4. SOCKETS can be loaded by means of a batch file that contains the following
commands:

SOCKETM EXAMPLE6.CFG

These commands allow SOCKETS to allocate more memory than allowed by the default values
when initiating a TCP/IP connection over a serial link. SOCKETS processes the
ECAMPLE6.CFG file followed by the MODEM.MC6 file.

Configuration File Details

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

EXAMPLE6.CFG:

Iface asy if0 ppp 1500 30 0x2f8 3
19200 modem.mc6

Creates an asynchronous connection on
com 2, IRQ 3 with a baud rate of 19200
and access the modem.cfg file for specific
initialization strings.

par if0 ipcp local compress tcp 16 1

Enables header compression, where 16 are
the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns
off compression.

par if0 ipcp local address 0.0.0.0

The ip address 0.0.0.0 indicates that the
server must assign the client a valid ip
address

par if0 lcp local accm 0 Asynch control character map, set all bits
to zero.

par if0 lcp local acfc on Address control field compression on or
off.

par if0 lcp local pfc on Protocol field compression on or off.
par if0 lcp local magic on Magic number option on or off. The

magic number is used to detect loop back
links by creating a number, sending a

Chapter 5, SOCKETS Configuration Examples 53

configure request, then comparing the
number received. If it is the same, then
there is a possible loop back, repeat test

par if0 pap user id password

Replace "id" and "password" with a valid
username and password on the NT server
that you are connecting to.

par if0 ipcp open
par if0 lcp open

Open specified layer. ipcp = ip control
protocol.
lcp = link control protocol.

route add default if0 Route all packets to interface if0
ip address
route

Prints to the screen the systems ip address
and route, useful for debugging only.

MODEM.MC6

i
CLIENT@r5000CLIENTSERVER@
@a2000

Initialize Modem and connect as
client

r 3
p rx

Number of Retries
Debugging parameters
r display what we receive
x display what we transmit

Example 7: SOCKETS Machine Using Call Back Verification.

Scenario:

If the NT machine logs into the SOCKETS machine with SocketsUser1 / SocketsPassword1, the
NT machine is assigned IP address 196.10.229.18 and the SOCKETS machine is 196.10.229.2.

If the NT machine logs into the SOCKETS machine with “SocketsUser / SocketsPassword,” the
SOCKETS machine will break the connection and dial back to 08036501 logging in as “NtUser”
with password “NtPassword.” The NT machine assigns the IP addresses of both machines.

The SOCKETS machine never initiates a modem call unless it has been called first. Once
SOCKETM is running, the IOCTL program can be used to initiate a dial operation or to enable
dial on demand.

SOCKETS Configuration File Details

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

54 Chapter 5, SOCKETS Configuration Examples

EXAMPLE7.CFG

iface asy p ppp 1500 30 0x3f8 4
9600 modem.mc7

Creates an asynchronous connection
designated interface “p” type ppp on
COM1 IRQ4 with an MTU of 1500,
Buffer limit of 30, baud rate 9600 and
modem information contained within the
modem.mc7 file

route add default p Routes all packets through interface “p”
user SocketsUser SocketsPassword
196.10.229.18 cbv

If user is SocketsUser with password
SocketsPassword assign IP address of
196.10.229.18 then disconnect session
and call back.

user SocketsUser1
SocketsPassword1 196.10.229.18

If user is SocketsUser1 with password
SocketsPassword1 assign IP address of
196.10.229.18 and continue session.

par p ipcpin local compress tcp 16
1

Enables header compression, where 16 are
the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns
off compression.

par p ipcpin local address
196.10.229.2

Assign local IP address 196.10.229.2

par p ipcp local compress tcp 16 1 Enables header compression, where 16 are
the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns
off compression.

par p ipcp local address 0.0.0.0 The ip address 0.0.0.0 indicates that the
server must assign the client a valid ip
address.

par p lcpin local accm 0 Sets the Asynch Control Character Map to
0.

par p lcpin local acfc on Sets local Address and Control Field
Compression on.

par p lcpin local pfc on Sets local Protocol Field Compression on.
par p lcpin local magic on Magic number option on or off. The

magic number is used to detect loop back
links by creating a number, sending a
configure request, then comparing the
number received. If it is the same, then
there is a possible loop back: repeat test

par p lcpin local authen pap Sets the local Authentication protocol to
pap.

par p lcp local accm 0 Sets the local Asynch Control Character
Map to 0.

Chapter 5, SOCKETS Configuration Examples 55

par p lcp local acfc on Sets the local Address and Control Field
Compression to on.

par p lcp local pfc on Sets the local Protocol Field Compression
to on.

par p lcp local magic on Magic number option on or off. The
magic number is used to detect loop back
links by creating a number, sending a
configure request, then comparing the
number received. If it is the same, then
there is a possible loop back, repeat test. .

par p pap user NtUser NtPassword Allow login for user NtUser with
password NtPassword. PAP corresponds
with the previous set authentication
protocol.

par p ipcp open Set incoming dial-in method to open.
par p ipcpin open Set incoming dial-in method to open.
par p lcp listen Set dial-out method to listen.
par p lcpin listen Set dial-out method to listen.

MODEM.MC7

i
a@w500a@w500atl1w1%e2&q5&
c1&d2s11=70&k3s30=18s0=0^M^
J@w100

Modem Initialization string. Please refer
to the modem manufacturer manual for
the specific initialization string to match
your modem.

a
n 08036501 Number to dial
d
^M^J@w1000atd@w110@n@w11
0^M@d40000

Dial command

c
r 4 Number of retries to dial the connection.
p n Debugging parameters: r=show modem

receive, x=show modem xmit
d=always dial, n=no dial-on-demand

Example 8: SOCKETS Machine with CBV and Logging-in.

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

56 Chapter 5, SOCKETS Configuration Examples

EXAMPLE8.CFG

iface asy p ppp 1500 30 0x3f8 4
9600 modem.mc8

Creates an asynchronous connection
designated interface “p” type ppp on
COM1 IRQ4 with an MTU of 1500,
Buffer limit of 30, baud rate 9600 and
modem information contained within the
modem.mc8 file

route add default p Routes all packets through interface “p”
user NtUser NtPassword
196.10.229.208

If user is NtUser with password
NtPassword assign IP address of
196.10.229.208 then disconnect session

par p ipcp local compress tcp 16 1 Enables header compression, where 16 are
the maximum number of concurrent
TCP/IP connections. 1 turns on
compression, 0 turns
off compression.

par p ipcp local address 0.0.0.0 The ip address 0.0.0.0 indicates that the
server must assign the client a valid ip
address.

par p lcp local accm 0 Sets the local Asynch Control Character
Map to 0.

par p lcp local acfc on Sets the local Address and Control Field
Compression to on.

par p lcp local pfc on Sets the local Protocol Field Compression
to on.

par p lcp local magic on Magic number option on or off. The magic
number is used to detect loop back links by
creating a number, sending a configure
request, then comparing the number
received. If it is the same, then there is a
possible loop back, repeat test.

par p pap user SockectsUser
SocketsPassword

Allow login for user SocketsUser with
password SocketsPassword. PAP
corresponds with the previous set
authentication protocol.

par p ipcp open Set incoming dial-in method to open.
par p lcp open Set incoming dial-in method to open.
par p ipcpin local compress tcp
16 1

Enables incoming header compression,
where 16 are the maximum number of
concurrent TCP/IP connections. 1 turns on
compression, 0 turns
off compression.

par p ipcpin local address
196.10.229.202

Set the local IP address on an incoming
transmission to 196.10.229.202

par p lcpin local accm 0 Sets the local Asynch Control Character
Map to 0.

par p lcpin local acfc on Sets the local Address and Control Field

Chapter 5, SOCKETS Configuration Examples 57

Compression to on.
par p lcpin local pfc on Sets the local Protocol Field Compression

to on.
par p lcpin local magic on Magic number option on or off. The

magic number is used to detect loop back
links by creating a number, sending a
configure request, then comparing the
number received. If it is the same, then
there is a possible loop back: repeat test

par p lcpin local authen pap Set the authentication protocol for
incoming lcpin to pap.

par p ipcpin open Set dial-in method for ipcpin to open.
par p lcpin open Set dial-in method for lcpin to open

MODEM.MC8:

I
a@w500a@w500atl1w1%e2&q5
&c1&d2s11=70&k3s30=18s0=0^
M^J@w100

Initialize the modem; please refer to the
manufacturer documentation for the
specific modem initialization string.

a
n 08034131 Number to dial
d
^M^J@w1000atd@w110@n@w1
10^M@d40000

Dial string.

c
r 4 Number of retries.
p r Debugging information. Parameters:

r=show modem receive, x=show modem
xmit
d=always dial, n=no dial-on-demand

When the “NT look-alike” side starts up, it dials 08034131. The “SOCKETS” side answers and
after the successful login, drops the connection and dials 08036501. During PPP negotiation, the
“NT look-alike” side is assigned IP address 196.10.229.202 and the “SOCKETS” side, IP address
196.10.229.108.

Example 9: Dial-up SLIP Connection with SOCKETS as an IP Router

You want to connect your LAN to another network via a modem using a dial-up SLIP link. The
SOCKETS PC will act as an IP router (or gateway) to the other network. This example is
symmetrical: You can use the same setup on both sides to enable any side to initiate the call. (The
IP addresses will have to be unique.)

58 Chapter 5, SOCKETS Configuration Examples

Use an asy interface with CSLIP to get better throughput. Your network is 192.6.1.0 and your
address 192.6.1.111. The asy interface will also be 192.6.1.111 linking the 192.6.2.0 network (or
the rest of the world) on the other side. The modems establish a connection with no logon
required.

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

The configuration file EXAMPLE9.CFG contains:

Ip address 196.6.1.111/24 Sets an IP address of 196.6.1.111 with a
24-bit subnet mask to the following
interface.

Iface pdr if0 dix 1500 10 0x60 Creates a standard Ethernet connection,
type pdr (packet driver), interface name
if0, type dix, MTU 1500, Buffer Limit 10,
Interrupt vector of the packet driver at
0x60.

IPAddress=192.6.1.111/0 Sets an IP address of 192.6.1.111 with a
0-bit subnet mask to the following
interface.

Iface asy sl0 cslip 576 10 3f8 4
19200 asy-io.mod

Creates a standard modem connection on
COM1. The connection is asynchronous,
interface name sl0, MTU 576, Buffer
Limit 4, baud rate 19200, and reference
the file asy-io.mod for specific modem
information.

; Make this the default route:
par sl0 19200 CTS RTS For interface sl0 set the serial baud rate to

19200, output flow to CTS, input flow to
RTS.
CTS = Clear to Send modem signal.
RTS = Request To Send modem signal.
*Use only for asy type interfaces.

par sl0 ripadv Enable Routing Information Protocol on
interface sl0.

rip advertise 30 Set RIP advertise time to 30. Time is the
number of elapsed seconds before the
advertisement is repeated.

rip use 200 Set RIP use time to 200. Time is the
period during which routes are added or
amended as a result of RIP, and are valid
for time seconds.

Chapter 5, SOCKETS Configuration Examples 59

The start up file SOCKETS.STU will display the current status with:

ip address Display the IP address
route Display the routes
ifstat Display the interfaces

The modem definition file is ASY-IO.MOD:

I
a@w100atz^M^J@w500ats0=1^M
^J@w100

Initialise modem (Caution: consult the
manual for your own modem)

d
^M^J@w2000atdt@n^M^J@d400
00

Dial command: send "<CR><LF>", wait
2 seconds, send
"atdt<number><CR><LF>", wait 40
seconds for DCD

n 0,011-790-1234 The number to dial
r 5 Number of retries
p r Parameters for debugging (show modem

data):
r=receive and/or x=xmit

 Password protected logon facilities can be
added with answer and connect scripts.
(See next examples or ASY-IOL.MOD on
disk)

Example 10: Multiple Dial-in Connections

You have a number of modems for dial-in of various users or other networks each with a fixed IP
address. When somebody dials into your system, SOCKETS will need to know his IP address to
be able to set up a return route to him. The network size for each remote host must also be known.
(You have to understand sub-networks for this example.)

The way to do this is to set up a mdd interface for each IP address (using an IP address on that
network). Each mdd interface has a modem definition file containing a unique exchange
identifier (XID). Each modem has an aslink interface with a modem file containing an answer
script. When the remote dials in, he has to specify his XID in his connect script (like a login).
The aslink then links to the mdd with the same XID and your remote user is connected using the
routes set for his mdd interface.

PPP Parameters:

Ipcp = ip control protocol.
Lcp = link control protocol.

60 Chapter 5, SOCKETS Configuration Examples

The commands lcpin, papin, apin and ipcpin can be specified for incoming parameters. These
correspond with the lcp, pap, ap and ipcp commands. The reason for having a different set of PPP
parameters is to allow the SOCKETS implementation to act as both a “PPP server” and a “PPP
client” without having to re-configure it.

The configuration file EXAMPL10.CFG should contain:

IPAddress=197.55.2.9 Set the IP address of the following
interface to 197.55.2.9

iface pdr if0 dix 1500 10 0x60

Creates a standard Ethernet connection,
type pdr (packet driver), interface name
if0, type dix, MTU 1500, Buffer Limit 10,
Interrupt vector of the packet driver at
0x60.

; A Multi Destination Driver
; connecting to the smallest subnet
allowing 2 hosts

IPAddress=193.101.51.1/30 Set the IP address of the following
interface to 193.101.51.1 with a 30-bit
subnet mask.

iface mdd mdd0 slip 576 10
mdd10.mod

Create a multiple destination interface,
type mdd, interface name mdd0, class slip,
MTU 576, Buffer Limit 10, access the file
mdd10.mod for specific interface
commands.

iface asy as10 cslip 576 10 0x3F8
4 19200 aslink.mod

Create an aslink connection on COM1.

All the modems (aslink interfaces) may use the ASLINK.MOD file:

i
a@w100atz^M^J@w500ats0=1^
M^J@w100

Initialise modem (Warning: consult the
manual for your specific modem
initialisation string)

a
@w500^M^JXID?@f5000@w20
0ccc

Answer script to prompt for XID

p r Parameters for debugging (show modem
data):
r=receive and/or x=xmit

All the mdd interfaces will use a specific MDDn.MOD file with its own unique XID. The XID
links to the IP address in the configuration of the mdd interface. MDD0.MOD will be:

x id0 Set the XID variable
p r Parameters for debugging (show modem

data):
r=receive and/or x=xmit

Chapter 5, SOCKETS Configuration Examples 61

The users dialling into the system above may use asy interfaces with a modem file containing the
following commands (see file ASY-OX.MOD):

i
a@w100atz^M^J@w500ats0=1^M
^J@w100

Initialise modem (Warning: consult the
manual for your own modem)

d
^M^J@w2000atdt@n^M^J@d400
00

Dial command: send "<CR><LF>" wait 2
seconds, send "atdt<number><CR><LF>"
wait 40 seconds for DCD.

n 790-1234 The number to dial
r 5 Number of retries
x id0 Set the XID variable
c @r1000XID@^F@x^M@r100c Connect script to login at the remote: wait

1 second after DCD to receive XID
prompt, send the ^F XID ^M sequence,
receive a "c" as confirmation.

p rx Parameters for debugging (show modem
data):
r=receive and/or x=xmit

Chapter 6, SOCKETS Utility Descriptions

SOCKETS Utilities

SOCKETS utilities make use of command-line parameters and/or configuration files. Please be
careful to note the name and location of the configuration file used by the application you are
working with. All SOCKETS applications require that the kernel be loaded before the application
is run in order to function properly.

ARPSTAT

ARPSTAT is a demonstration program to illustrate the use of the ArpApi function. It is hard
coded to only remove Ethernet entries,

Syntax
ARPSTAT ip address

Remarks
ip address

The IP address of the ARP entry to be removed. If this is 0.0.0.0 then all entries will be
removed.

Example
ARPSTAT 198.162.1.1

Removes the ARP entry associated with the IP address of 198.162.1.1

DHCPSTAT

DHCPSTAT displays the DHCP information for the machine.

Syntax
DHCPSTAT [r | v]

Options
The r option is for forcing a renewal of the DHCP lease.

The v option displays the SOCKETS version information.

Example
DHCPSTAT

This will display all the DHCP information, such as IP address and lease time.

64 Chapter 6, SOCKETS Utility Descriptions

FTP

FTP is a file transmitting and retrieving client that runs in interactive or batch mode.

Syntax
FTP server [options]

Options
/n

/v

/p=Port

/f=ScriptFile [ScriptParameters]

Remarks
Server

The name or ip address of a server to connect to.

/n
Suppress progress indicator.

/v
Verbose output for troubleshooting.

/p=Port
Connect to a server port other than the standard FTP port number of 21.

/f=ScriptFile
A file containing commands for the client to send to the server upon connection.
Simple parameter substitution is performed, with the first element of
ScriptParameters accessible as “%1,” etc.

ScriptParameters
Parameters to pass into the ScriptFile.

Return Codes
0 Success

1 Parameter error

2 SOCKETS not loaded

3 User aborted

4 Transfer aborted

5 Error writing local file

6 Error reading local file

Other Server returned error response code; to find that error code, add 390 to the
response code returned by FTP. The result will always be greater than or
equal to 400 in this case.

Example
FTP /n FTP.cdrom.com /f=getfile.scr /.2/simtelnet/msdos DIRS.TXT

Chapter 6, SOCKETS Utility Descriptions 65

(The file GETFILE.SCR):
user anonymous
pass root@
cd %1
binary
get %2
quit

FTP Commands

The commands entered at the FTP client can be interpreted and translated to standard FTP
commands to be sent to the server. The FTP server might recognise more, or less, commands than
the standard list of commands as specified in RFC 959. The site command is always server
dependent. Some of the standard commands are implemented differently in various servers.

Useful things to note are:

1. The put and get commands allow multiple file transfers by usage

of wild card characters. When getting files with paths or long names, no translation of
foreign file names are done. Specify a valid DOS local_file name.

2. A short directory list (NLST) is obtained by ls and the long list
with dir.

3. Some of the commands can be abbreviated.
4. Some commands are aliases added for user comfort like bye, exit

and quit; get and mget; and put and mput.
5. The optional [local_file] parameter will, when specified, cause the

output of that command to be logged to a file. By specifying the file as PRN you can get
immediate printouts.

6. On some servers you might specify the optional [remote_file]
parameter as PRN or the printer output device to do remote printing. (See also the site
nopath command for the SOCKETS FTP server.)

7. The F3 key and spacebar can be used to recall the last command
word by word.

Below is a list of commands recognised by the SOCKETS FTP client (some FTP servers might
not offer all the facilities):

Command Description

abort Cancel an incomplete transfer

append "Put" a file at the server but append it if the file exists

ascii Synonym for type a

binary Synonym for type i

bye Synonym for quit

cd directory Synonym for cwd

cwd directory Change server directory

66 Chapter 6, SOCKETS Utility Descriptions

dele file Delete a server file

dir [file l directory [local_file]] Synonym for list

exit Synonym for quit

get remote_file(s) [local_file] Transfer a file from the server in the current mode (type)

image Synonym for type i

ls [file l directory [local_file]] Synonym for nlst

lcd directory Perform a local change directory

ldir [file l directory] Give a local directory listing

list [file l directory [local_file]] Give a long directory listing

mget remote_file(s) [local_file] Synonym for get

mkdir remote_directory Create a server directory

mput local_file(s) [remote_file] Synonym for put

nlst [file l directory [local_file]] Give a short names-only directory listing

pass [password] Password for username

pasv [on | off] Report or change the status of the passive transfer mode to enable
firewall friendly file transfers. (The SOCKETS FTP client always
tries to switch passive mode on at the start of a session.)

put local_file(s) [remote_file] Transfer a file to the server in the current mode (type)

Pwd Print working directory at server

quit Terminate FTP session

quote remote_command [args ...] Send a command to the server without any interpretation

rmdir remote_directory Remove (delete) a server directory

rnfr existing_filename Rename a file, command 1 of 2

rnto new_filename Rename a file, command 2 of 2

site sub-command Send server specific commands

size file Report the file size in bytes as a 213 message

shell Shell to DOS for IFTP.EXE

stat Report the status of a transfer or active connections

System Return operating system information from the server

type [i I a] Report or select the file transfer mode: image (binary) or ASCII

user [username] Username to logon

verbose [on | off] Verbose mode reports more of the FTP negotiations

Chapter 6, SOCKETS Utility Descriptions 67

GETMAIL

GETMAIL retrieves all of the messages from a POP3 (Post Office Protocol version 3) Internet
mail server. Each message is stored as an individual file on the local machine. GETMAIL also
creates a log file to indicate successful downloads or errors.

Syntax
GETMAIL server user password

Options
Server

The IP address or DNS name of the Internet mail server from which to download
messages. The messages that are downloaded are named by sequential file number
and are placed in the current working directory.

User
The username for server identification purposes.

Password
The secret for account authentication on the server.

Logging Format
Timestamp, Code String
Timestamp

Weekday Month Day Time Year

Code
Three digit integer. 000 means perfect success, 100-199 mean usage error and 200-
299 means TCP/IP error from server.

String
Human–readable explanation of the error code.

Example
GETMAIL 10.0.0.1
GETMAIL 10.0.0.1 guest secret

HTTPGET

HTTPGET is a simple web client that can retrieve the contents of a URL to a local file.

Syntax
HTTPGET [-p] [–s] [–v]URL

Options
-p=Port

-s=Server

68 Chapter 6, SOCKETS Utility Descriptions

-v

localfile

Remarks
Port

Use to specify a remote port other than 80 to connect to.

Server
Use to specify a server name if the URL doesn’t contain one.

-v
Display extra output for troubleshooting.

localfile
Rather than keeping the filename from the URL, the contents may be saved to a
named file.

Example
HTTPGET http://www.datalight.com/images/logohead.gif
HTTPGET –v http://www.datalight.com/images/logohead.gif logo.gif

IFSTAT

IFSTAT displays the status of the Interface, Modem, Serial, PPP, and it displays the version
information for SOCKETS.

Syntax
IFSTAT [i] [m] [p] [s] [v]

Options
The i option shows the Interface status.

The m option shows the Modem status.

The p option shows the PPP status.

The s option shows the Serial status.

The v option shows the version information.

Example
IFSTAT v

This will display the SOCKETS version information

IOCTL

IOCTL is a diagnostic utility for the SOCKETS IOCTL functions using the TCP/IP Basic API

Syntax
IOCTL interface name

Chapter 6, SOCKETS Utility Descriptions 69

Remarks
interface name The name of the interface to be tested.

Example
IOCTL if0

Tests the IOCTL functions through the interface “if0” based on the commands given
during the diagnostics.

IOCTLH

IOCTLH is a diagnostic utility for the SOCKETS IOCTL functions using the TCP/IP Basic API.
This version supports the hot-swappable functionality.

Syntax
IOCTLH interface name

Remarks
interface name The name of the interface to be tested.

Example
IOCTLH if0

Tests the IOCTL functions through the interface “if0” based on the commands given
during the diagnostics.

IPSTAT

The IPSTAT utility returns statistics on IP and memory. Use IPSTAT to check for error conditions
and memory problems.

Syntax
IPSTAT

Example
IPSTAT

The follwing will be displayed (The values may differ):

IP stats at 160F:04C8:

Total Packets 2671

Smaller than minimum size 0

IP header length too small 0

Wrong IP version 0

Unsupported protocol 0

Memory available 9016

Memory allocation failures 0

Memory free errors 0

70 Chapter 6, SOCKETS Utility Descriptions

Minimum stack observed 886

LPR

LPR is a printer client for UNIX-style printer servers. There is no matching LPD server for
SOCKETS.

Syntax
LPR /s=Server /p=Printer /u=Agent Filename

Options
/r

/q

/l=Port

/h=LocalHostName

/c=JobClass

/j=JobName

/n

/t

Remarks
/q

Query Mode. Can be followed by agent names or job numbers to filter output.

/r
Remove Mode. May be followed by job numbers to specify jobs to remove.

/s=Server
Hostname of the print server.

/p=Printer
Name of the printer device on the server to be used for output.

/u=Agent
User name on the server. Used for identification.

Filename
Local file name to spool to the server.

/l=Port
Connect to the specified port on the server rather than the standard port number of
515.

/h=LocalHostName
Name of the local host for job identification purposes.

/c=JobClass
Name of the job class for job identification and scheduling purposes.

Chapter 6, SOCKETS Utility Descriptions 71

/j=JobName
Name of the job, for identification purposes; defaults to the local file name if not
specified.

/n
Run without user interaction.

/t
Text filter. Strips all unprintable characters before printing.

Example
LPR /n /s=10.0.0.1 /p=prn0 /u=Tester output.dat
LPR /n /s=10.0.0.1 /p=prn0 /u=Tester /q
LPR /n /s=10.0.0.1 /p=prn0 /u=Tester /r

MAKEMAIL

MAKEMAIL packages the body text and any attachments for delivery using the SENDMAIL
application.

Syntax
MAKEMAIL –tToAddress –fFromAddress –sSubject –bBodyTextFile -oOutputFile-
aAttachment

Options
ToAddress

The e-mail address of the recipient(s) of this mail. Additional recipients are
specified by repeated use of the –t parameter. If the ToAddress is a name that can be
resolved by either the DNS server or host file then the @servername is not
necessary.

FromAddress
Used to identify the sender of the message.

Subject
The subject line of the e-mail message.

BodyTextFile
The local file containing the body text of the e-mail message to deliver.

OutputFile
The local file name in which to store the prepared file for delivery by SENDMAIL.
This file is overwritten if it already exists!

Attachment
The name of a local file to be binary attached to this e-mail message. Multiple
attachments are created by repeated use of the –a parameter. Files are attached as
MIME parts, encoded with the application/x-uuencode content type.

Example
MAKEMAIL -tfred@yahoo.com -fmary@yahoo.com –sStatus –bmessage.txt –
omail.dat
MAKEMAIL –tfred –tbarney –fwilma –sDinner –bmenu.txt –omail.dat

72 Chapter 6, SOCKETS Utility Descriptions

MAKEMAIL –tfred –fwilma –sBowling –bbody.txt –aStone.jpg –aRock.jpg –
omail.dat

NETBIOS

NETBIOS is a TSR that provides a NETBIOS-compatible network interface.

Syntax
NETBIOS [options]

Options
/a=NameCount

/b=BroadcastFile

/c=NCBs

/l=LanAdapterNumber

/n=HostsFile

/s=SessionCount

/u

Remarks
/a=NameCount

Maximum number of names to cache.

/b=BroadcastFile
Local file containing IP addresses not on the local network segment that should be
considered part of the “broadcast” group.

/c=NCBs
Number of NCBs to allocate.

/l=LanAdapterNumber
For the NETBIOS API, the adapter number of this interface.

/n=HostsFile
Local file name containing name-to-IP mappings.

/s=SessionCount
Number of simultaneous sessions to allow.

/u
Running NETBIOS again with this option unloads the TSR.

Configuration File
NETBIOS uses a file to statically map names to IP addresses. This is the HostsFile. The
file contains space-separated parameters in the format:

name IP

Chapter 6, SOCKETS Utility Descriptions 73

NETBIOS uses a second file to list machines that should be added to the local
“broadcast” group. This is the BroadcastFile. The file contains one parameter per line in
the format:

IP

Configuration File Parameters
name

The local alias for this entry.

IP
The remote IP address of this entry.

Example
NETBIOS /n=lmhosts

PDTEST

The PDTEST utility is a diagnostic program that tests loaded packet drivers. PDTEST does not
perform a full test since it does not transmit traffic through the drivers, but just checks their status.
It reports such things as the interrupt vector of the packet driver, its class, the MAC address, and
information on the status of the driver. PDTEST is useful for checking that the packet driver was
actually loaded which interrupt was used, and the class of packet driver. Classes supported by
SOCKETS are marked with an asterisk (*) in the following list of recognized classes:

Class 1* DIX Ethernet_II

Class 3* 802.5 Token Ring

Class 5 Appletalk

Class 6* SLIP

Class 9 AX.25 Amateur Radio

Class 11* 802.3 with 802.2 headers IEEE

Class 12 FDDI with 802.2 headers

Class 13 Internet X.25

Class 14 Northern Telecom LANSTAR encapsulating DIX

Class 16 Point to Point Protocol for serial lines

Class 17 802.5 Token Ring w/expanded RIFs

Most Ethernet packet drivers support both classes 1 and 11. Class 1 is the default class and should
normally be used.

Syntax
pdtest

Example (output)
Packet driver found at 0x60

Version 9, class 1, type 57, number 0, functionality 6

74 Chapter 6, SOCKETS Utility Descriptions

Name: MAC/DIS converter

High performance driver

Rev 1.09 par_len 14 add_len 6 mtu 1514 multicast_buf 0

Rcv_bufs 0 xmt_bufs 0 int_num 0x0

Address: 00:00:c0:08:d7:15

Extended driver

Packets:in 511 out 595 bytes:in 112664 out 74476

Errors:in 0 out 0 packets lost 0

RC.JAR

RC.JAR is a Java remote console applet for connecting to hosts running HTTPD. It shows the
text -mode contents of the HTTPD machine’s display memory, and allows fully interactive
keyboard input. This is an alternative to the RCCLI applet.

Syntax
The link to RC.JAR should be embedded in an HTML page served by the HTTPD server.
An example is available in the CGI/ subdirectory of the HTTP applications.

Remarks
RC.JAR has been compiled for use with the Java Development Kit version 1.3.1. The
browsers Mozilla 1.x and newer, as well as Microsoft’s Internet Explorer 4.0 and newer
are supported. In order to use with a Netscape Browser a security certificate must be
compiled into RC.JAR.

RC_DK.JAR

RC_DK.JAR is a Java remote console applet specifically for Danish keyboards. Please see
RC.JAR for more information.

RCCLI

RCCLI is a DOS remote console client for connecting to hosts running HTTPD, and is an
alternative to the RC.JAR applet.. It shows the text -mode contents of the HTTPD machine’s
display memory, and allows fully interactive keyboard input. To exit the remote console client,
press Ctrl-Alt-X.

Syntax
RCCLI server_address <tcp_port>

Chapter 6, SOCKETS Utility Descriptions 75

Options
server_address

Specify the IP address or DNS name of the machine running remcon.

tcp_port
tcp_port defaults to 81, but must be changed if a nonstandard remote console port is
chosen for the remote console session during server configuration.

Example
RCCLI 10.0.0.1

SENDMAIL

SENDMAIL delivers e-mail messages packaged by the MAKEMAIL application to an Internet
mail server. SENDMAIL also creates a local log file to indicate successful send or failures.

Syntax
SENDMAIL server file

Options
Server

The IP address or DNS name of the Internet mail server to receive the message.

File
The file, created by the MAKEMAIL utility, to deliver.

Logging Format
Timestamp, Code String
Timestamp

Weekday Month Day Time Year

Code
Three digit integer. 000 means perfect success, 100-199 mean usage error and 200-
299 means TCP/IP error from server.

String
Human–readable explanation of the error code.

Example
SENDMAIL mail.datalight.com mail.dat

SETHOST

The SETHOST utility sets an environment variable (default HOSTNAME) to the name contained
in a map file (default MACHOST.MF) according to the hardware address (MAC or Ethernet)
found by searching for a packet driver tsr. Network management is simplified when using
%HOSTNAME% in the SOCKET.CFG files to set IP addresses.

76 Chapter 6, SOCKETS Utility Descriptions

SETHOST can be used in either of two modes:

• To update the MACHOST.MF file or

• To set the HOSTNAME environment variable.

Syntax
sethost [/f=n | /n=hostid] [/c=] [/m= map_file] [/v=variable]

Options
without a hostid set the variable

/f=n
Use nth environment block (required for some systems - try /n=1 first.)

/n=hostid
This is the IP address of the local PC in symbolic form as in HOSTS or in decimal
form to add to the mapfile

/c=
Preserve the case of the environment variable

/m=map_file
Use map_file instead of default MACHOST.MF

/v=variable
Use variable instead of the default name: SETHOST

Note: The equal signs are required in this case since SETHOST supports applications where the
n= is optional. A slash without an equal sign indicates the setting of a host id.

Example
To modify or add an entry in MACHOST.MF:

sethost /n=ws_name

To set the variable HOSTNAME:
sethost

Installing SETHOST

Installing SETHOST requires a working installation of SOCKETS. Also, all workstations run
SOCKETS from a server disk.

Edit the HOSTS file to add all the workstations’ names and IP addresses. We recommend that all
the workstation IP addresses be preceded with an asterisk to make them hidden to other users
looking into the list of hosts. For example, *198.147.35.120 admin03

Copy the SETHOST.EXE program and an empty file MACHOST.MF to your server, in a
directory such as X:\SOCKETS, for example.

At each workstation, log in as supervisor (or have write access to X:\SOCKETS) and execute the
DOS commands:

x:
CD \SOCKETS\UTILS
SETHOST /N=WS_NAME
SETHOST

Chapter 6, SOCKETS Utility Descriptions 77

SET
The SETHOST /N=WS_NAME command creates an entry in the MACHOST.MF file with the
name of the workstation and its MAC (Ethernet card) address. This is the important “once-only”
command. The next two commands are to verify that the ws_name is stored in the environment
variable HOSTNAME.

In the AUTOEXEC.BAT or any batch file executed after login and before running SOCKETS,
put the following commands:

x:
CD \SOCKETS\UTILS
SETHOST

The IP addresses are now linked to the MAC addresses of the network cards. If a network adapter
or host system is changed, update the MACHOST.MF file with

sethost /ws_name

The MACHOST.MF file keeps the mapping from the MAC addresses to the workstation names
and the HOSTS file maps the workstation name to its IP address.

The variable name HOSTNAME and filename MACHOST.MF are the defaults for
SETHOST.EXE but can be user-specified. Run SETHOST /? to display the available options.

SNTPCLI

SNTPCLI is used for getting system network time information from a system network time
protocol (SNTP) server.

Syntax
SNTPCLI server [minutes]

Remarks
server The server providing the time service.

Options
minutes An optional parameter which provides an adjustment to the server time in
minutes.

Example
SNTPCLI 182.109.2.80

Retrieves the time information from the server specified.

Time Zones

An additional environment variable for time zones is also supported. The TZ variable allows
SNTPCLI to compensate for time zone differences on the SNTP server when setting the local
system time By default, if no time zone is set, SNTPCLI assume Greenwich Mean Time (GMT).

Setting the TZ variable is not necessary when using all programs. The syntax for the TZ
environment variable is:

78 Chapter 6, SOCKETS Utility Descriptions

SET TZ= <abbreviation> +|- value

Abbreviation represents any three-letter abbreviation for the chosen time zone. The variable
serves as a reminder to the user. For example, if setting the time zone for Pacific Standard Time,
the variable could be set as PST and for Eastern Standard Time as EST. The abbreviation is only
a placeholder in the syntax for the TZ variable. There are no incorrect abbreviation choices as
long as only three letters are used.

Value represents the number of hours this time zone varies from GMT. For example, the west
coast of the United States and Canada is –8 hours relative to GMT. This value may have to be
adjusted to compensate for daylight savings time. There should be no spaces between the
abbreviation, plus or minus sign, and the value. Some examples are:

SET TZ=PST –8
SET TZ=CMT –3
SET TZ=GMT+2

If an incorrect format for the time zone is entered, the default of GMT is used.

SPRINT

SPRINT is a simple printer client that prints through a SOCKETS host configured as a print
server. To configure a SOCKETS host as a print server, see the start prntsrv command in
Chapter 4, SOCKETS Configuration .

Syntax
SPRINT Server Filename [options]

Options
Port

Mask

Remarks
Server

Hostname of the print server.

Filename
Local file name to spool to the server.

Port
Connect to the specified port on the server rather than the standard port number of
10.

Mask
Used for status reporting, this parameter only works if the server was configured
with a mask.

Example
SPRINT 10.0.0.1 output.dat

Chapter 6, SOCKETS Utility Descriptions 79

TCP

TCP.EXE is a utility used to examine and change the TCP parameters.

Syntax
TCP close n

TCP irtt [n]

TCP mss [n]

TCP reset n

TCP retry [n]

TCP status [/columns [refresh time]]

TCP status n

TCP window [n]

Remarks
close Close connection specified by ‘n’.

irtt Set, using ‘n’, or display the Initial Round Trip Time.

mss Set, using ‘n’, or display the Maximum Segment Size.

reset Reset connection ‘n’.

retry Set, using ‘n’, or display the retry count.

status Display summary status or all connections.

status n Display detailed status for connection ‘n’.

window Set, using ‘n’, or display window size.

Options
/columns The number of columns to display status with manual or automatic

refresh.

refresh time The time in seconds after which an automatic refresh occurs.

Example
TCP irtt

Displays the current irtt value.

XPING

XPING starts a continuous string of pings until stopped by a keystroke.

Syntax
XPING ip address [interval]

Remarks
ip address This may be a numeric address or a name address.

80 Chapter 6, SOCKETS Utility Descriptions

Options
interval The time to wait between pings in clock ticks.

Example
XPING 10.0.0.1 20

This will ping the address of 10.0.0.1 every 20 clock ticks.

Chapter 7, SOCKETS Server and Client Applications

HTTP Server

Overview
The SOCKETS HTTP server, HTTPD.EXE, is a small, fast, reliable and extendable web server
that can run as either an application or TSR. Apart from the minimum required file download
capability, the following additional capabilities are provided:

1. Remote Console Server- ability to gain terminal-type access to the server system, using a
standard browser, without the need to install any software on the browser computer

2. Authentication – Both system wide and directory wise

3. CGI Extendibility – The ability to extend the server to create dynamic web pages, perform
specialized tasks, etc.

4. A Server Side Includes (SSI) interface is provided using the CGI interface, enabling a user
to create web pages using HTML templates with variable names, which is substituted in-
time with specific values

5. Ability to run as a background process

6. Flexibility to control physical parameters such as memory usage and number of connections

Server

The HTTP server is used to send static web pages existing as files on the server or dynamically
generated web pages to a remote client (browser). Dynamic pages can be generated in two ways:

1. Extension CGI. By calling an external CGI handler, the server
provides an API to external handlers. A Server Side Includes (SSI) interface is provided as
well, which makes it very easy to create powerful interactive web pages.

2. Spawning CGI. By spawning programs with a relatively short
execution time to generate the pages through a mechanism similar to CGI, the basic
mechanism used by CGI is that arbitrary programs can be spawned from the web server
with input as received from the remote browser and output that can be sent to the browser.

The Remote Console Server accepts input from a remote client that is fed to the keyboard buffer
for use by an arbitrary program using it. It also monitors the screen display buffer area and sends
screen information to the remote client.

The SOCKETS password file controls authentication. Authentication is user specific and may
also differ from directory to directory. It may also be put off for either some or all users. See the
section on authentication.

82 Chapter 7, SOCKETS Server and Client Applications

The HTTP server can support multiple simultaneous sessions. The GET and POST request
methods are implemented as well as the following MIME types:

text/html, text/plain, image/gif, image/jpeg, image/jpeg and application/octet-stream.

The MIME type is determined by the file extension.

Remote Console Server

Initialization

The client (browser) will initialize a remote session. An HTTP connection will be made to the
HTTP server. The downloaded page will contain the applet that will automatically connect to the
RCS on TCP port 81. An example download page is supplied as REMCON.HTM.

Almost any application e.g. a text editor can be run on the server. The remote keyboard and
display control the application as if they were locally attached.

On the remote side, the Java Applet acts as a simple terminal emulator that displays what it
receives from the server and sends what is entered from the keyboard to the server.

It is not required to have a real display adapter on the embedded system server, only to have
display buffer memory.

When a new connection is made, all the screen data, as well as the cursor position, is sent to the
client. Subsequently the RCS keeps a watch on the video memory and cursor position and
whenever a change is detected, the RCS sends the changed data to the Java applet.

Keyboard data received from the client is passed to the keyboard buffer making it available as
keyboard input for use by any application executing on the server.

Remote Console Client

The remote console client exists as a Java 1.3.1 applet, supplied as RC.JAR, and will function on
any Java 1.3.1 compliant browser. Please note that a security certificate has not been compiled
into RC.JAR so it is not compliant with versions of the Netscape browser that require a security
certificate to run Java applets. A DOS based client using SOCKETS is also supplied as
RCCLI.EXE. For additional information about RC.JAR or RCCLI.EXE, please see the Utility
Description Chapter.

Extension CGI

The SOCKETS HTTP servers (HTTPD/HTTPFTPD) provide a facility to call functions in other
modules which may be TSR or transient programs. These functions are referred to as “HTTPD
extensions.” For more information please see the “ROM -DOS Developer’s Guide” section “CGI
Application API.

Chapter 7, SOCKETS Server and Client Applications 83

Extension CGI Examples

Five very simple examples are included to demonstrate the implementation of CGI. Source code is
included.

Put all .htm and .exe files in the %HTTP_DIR% directory and start HTTPD. Load all the cgi
programs (you may use cgi.bat). All is in place now and the examples may be accessed through
index.htm.

The first four examples may operate in one of two modes:

As a TSR (resident) program: this is the default behavior. At this stage unloading of the TSR is
not supported. De-registration is possible by loading the program again. This routine may be
repeated.

As a transient program: use ‘/t’ command line switch to activate. This option will immediately
spawn ‘command.com’. From this prompt other cgi programs may be loaded. The program exits
when ‘command.com’ is exited by typing ‘exit’ at the prompt.

These programs are:

1. cgiecho A very simple program that accepts data from a user and echoes it back nicely
formatted. Get echoform.htm from the browser.

2. cgicount A page visit counter. Only updates between sessions if transient (cgicount /t)
Get num.htm from the browser.

3. cgiform Does the same as the old ‘fill out the form and submit’ utility. Get caform.htm
from the browser.

4. SSI A very simple SSI implementation that demonstrates the SSI interfaces. Template.htm is
filled by some variables. Get ssi.htm from the browser.

The fifth example, FFUR , (Form-base File Upload Receiver) is only a transient program, but can
easily be adapted to be similar to the rest. It handles the upload of a file as a POST command by
filling out ffur.htm.

Passive Mode
The server may be run in passive mode by specifying a ‘/p’ command line switch. When passive,
the server will record network events but only handle them once it is triggered by a CGI user.

Server Memory

The server’s memory usage may be controlled in two ways:

1. By specifying the amount of memory when going TSR.

2. By specifying the maximum number of connections the server will allow.

Option 1 is the recommended option. Use Option 2 if you have ‘heavy’ web pages – usually the
type where pages consist of frames and many images, etc. Connections are generally reset when

84 Chapter 7, SOCKETS Server and Client Applications

more connections are attempted than the defined maximum. The client then must retry to establish
the lost connections, leading to a more distributed load on the server.

Spawning CGI

An external program, indicated by the requested URL, is spawned. All relevant information is
passed as environment variables. The CGI program gets all input (e.g. posted data) from standard
in and sends all response through standard out. Spawning CGI is discouraged in favor of
Extension CGI. For more information please see the “ROM-DOS Developer’s Guide” section
“CGI Application API.

Authentication
Default authentication matches the capabilities of the FTP server as documented in the section
“FTP Server” on page 87. A file called "SOCKET.UPW" should exist in the SOCKETS
(environment variable) directory.

The default permission file controls remote console access. Each listed user has a single-letter
privilege code set if he has privilege to use the Remote Console. The code should be missing if
that user does not have Remote Console privilege.

An additional authentication feature is implemented - htaccess. This feature provides a per-
directory permission override mechanism. It is enabled using '/t' as command line switch. If
htaccess is enabled, the default mechanism may be skipped (but no default users or remote console
access will be available).

A file called HTACCESS (typically hidden) contains authentication overrides to enable partial
anonymous access or additional password security to subdirectories, etc. If this feature is
activated, the server code will look for HTACCESS files in each directory starting from the
requested path and continuing upward in the directory structure (assuming the root directory to be
at the top) until an HTACCESS file is found. If no file is found, then the default settings are used.
An anonymous access entry is available for the developer to specify that some subdirectory is
authorized for any user, although its parent directory is password-protected. CGI scripts can also
be controlled via the HTACCESS mechanism.

HTTPD Program

The syntax for HTTPD is:

HTTPD [options] [<http_port>] [<rc_port>]

Any combination of these switches may be used. They should be separated by at least one space.

Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/t enable htaccess directory level authentication
/u unload if resident
/c close listen

Chapter 7, SOCKETS Server and Client Applications 85

/d do not start remote console
/g allow old type (spawning) CGI
/p Passive mode
/i=<InterruptNumber> Interrupt number for cgi API
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections>
/a=<ScreenX>, <ScreenY> set screen aspect

/v=<ScreenBufferSegment>[:
<ScreenBufferOffset>]

set video buffer address (hex)

/k Unload and abort all active connections

Remarks
ScreenX, ScreenY

The width and height of the screen area to serve for the remote console session.
These values default to 80 and 25, respectively.

ScreenBufferSegment, ScreenBufferOffset
Together, a pointer to the top -left corner of the display memory to serve for the
remote console session. These values default to B000 and 0000 respectively, for
monochrome display adapters and to B800 and 0000 respectively, for color display
adapters.

MemorySize
The maximum amount of memory available to the server. The default value is 32K.
The value of m can range from 8192 to 63472.

MaximumConnections
The maximum number of simultaneous connections allowed by the server.

InterruptNumber
The interrupt number to access the CGI API.

http_port
HTTP port to listen on. This parameter defaults to the standard HTTP port number
of 80.

rc_port
Remote Console port to listen on. This parameter defaults to 81.

The “root” directory for web content is the current directory when HTTPD is started. This can be
changed by setting an environment variable HTTP_DIR e.g.

SET HTTP_DIR=D:\SERVER\WEB

Format of "SOCKET.UPW"

This is the same file used for the FTP server’s (FTPD.EXE) permissions. This file consists of
lines where each line contains a user's information. A line starting with a # is considered a
comment and is ignored. Each line consists of four fields:

<Username> <Password> <Working Directory> <Permissions> [# comment]

86 Chapter 7, SOCKETS Server and Client Applications

Username: The name of this user. If it is *, it will be used when the client does not
specify a username.

Password: This user's password. If it is *, no password is required

Working Directory: The user will only have access to this directory and its subdirectories. If it is
‘/’, this user has access to the whole system. HTTP_DIR can be referred to
as ‘\’. If a relative path is specified, it is appended to HTTP_DIR.

Permissions: IMPORTANT when a user is granted both FTP and HTTP permissions, the
FTP permissions must appear first, otherwise they will be ignored.
Operations allowed. May contain any combination of the following tokens:

e - User may 'get' files
p - User may 'post' files
g - User may use cgi
m - User may use Re mote Console

Fields should be separated by single spaces. If any field is missing the entry is ignored. A
comment may follow the last field (permissions) of the line.

Note: If a default user is supplied, it should always appear first in the list of users. Only users
below the default user will be considered.

Format of "htaccess"

Any directory may contain this file, and serve as overrides to the general permissions for the
containing directory and all its subs until another htaccess is found. This file consists of lines
where each line contains a user's information. A line starting with a # is considered a comment
and is ignored. Each line consists of three fields:

<Username> <Password> <Permissions> [# comment]

username: The name of this user. If it is *, it will be used when the client didn’t specify
a username.

Password This user's password. If it is *, no password is required.

Permissions Operations allowed. may contain any combination of following tokens:
e - User may 'get' files
p - User may 'post' files
g - User may use cgi

Fields should be separated by single spaces.If any field is missing the entry is ignored. A
comment may follow the last field (permissions) of the line.

Note: If a default user is supplied, it should always appear first in the list of users. Only users
below the default user will be considered.

Chapter 7, SOCKETS Server and Client Applications 87

FTP Server
FTPD is a file server that can run either as an application or as a TSR. The name of the server as
displayed in the banner is determined by the HOSTNAME environment variable. If the
environment variable is not set, the name “Socket” is used. The user password file,
SOCKET.UPW, in the SOCKETS directory (indicated by the SOCKETS environment variable)
controls access.

A temporary file is created when a directory listing is requested. This file is created in the current
directory, but can be created in any directory as specified in the FTPDIR environment variable.

FTPD Program
The syntax for FTPD is:

FTPD [options] [<ftp_port>]
Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/u unload if resident
/c close listen
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections
/k Abort all active connections and unload

Remarks
MemorySize

The number of bytes of memory available to the server. This value defaults to
32768.

MaximumConnections
The maximum number of simultaneous connections allowed by the server.

ftp_port
FTPD will listen on the listed port. This parameter defaults to the standard FTP port
number of 21.

Configuration File
FTPD uses the standard SOCKET.UPW file for validating logins. The file is composed
of text lines, each representing a login name, password, and the configuration to use for a
session opened with those credentials. Space characters separate the parameters in the
file, which are in the following format:

name password directory rights

The location of the username/password file to be used by the server is specified by the
environment variable SOCKETS as follows:

%SOCKETS%\SOCKET.UPW

If the variable SOCKETS is not specified, the following file is used:
\DL\SOCKETS\SOCKET.UPW

88 Chapter 7, SOCKETS Server and Client Applications

Configuration File Parameters
name

The login name of this record.

password
The password to authenticate a user trying to login as this name.

directory
The starting directory for this user.

rights
Up t o four characters specifying which permissions this user is granted:

r means that this user has read access.

w means that this user has write access.

c means that this user has permission to make new directories.

d means that this user has permission to change to a directory other than his starting
location and subdirectories from the starting location.

Example Socket.upw
Admin admin c:\ drwc
Guest * c:\guest dr

Example Command Line
FTPD /m=40000 /r

FTP Server Commands

The following commands are recognised by the SOCKETS FTP server:

Command Description

abort cancel an incomplete transfer
append "put" a file at the server but append it if the file exists
cwd directory change server directory
dele file delete a server file
list [file l directory] give a long directory listing
mkd remote_directory create a server directory
nlst [file l directory] gives a short names-only directory listing
pass [password] password for username
pasv [on | off] report or change the status of the passive transfer mode to enable firewall

friendly file transfers. (The SOCKETS FTP client always tries to switch
passive mode on at the start of a session.)

retr remote_file transfer a file from the server in the current mode
stor local_file transfer a file to the server in the current mode
pwd print working directory
quit terminate FTP session
rmd remote_directory remove (delete) directory
rnfr existing_filename rename a file, command 1 of 2

Chapter 7, SOCKETS Server and Client Applications 89

rnto new_filename rename a file, command 2 of 2
site [path I nopath] use full path description (see
site raw [interface] open a session to a raw host using one of the raw lines (interfaces) specified
site sub-command command to be passed on to raw host
size file report the file size in bytes as a message prefixed with 213
stat report the status of a transfer or active connections
system return operating system information from the server
type [i I a] report or select the file transfer mode: image (binary) or ASCII
user [username] username to logon

Combined HTTP and FTP Server
HTTPFTPD is a combined HTTP and FTP server that can run either as an application or as a
TSR. By default, it processes normal HTTP requests on port 80 and normal FTP requests on port
21. It also serves a proprietary session displaying the contents of text -mode display memory to the
RC.JAR and RCCLI client applications. This feature is commo nly called the “remote console.”

If the HTTPFTPD server is loaded as a DOS TSR program, set the environment variable,
HTTP_DIR, to the location of the INDEX.HTML file; for example, SET
HTTP_DIR=C:\DL\SOCKETS\SERVER

HTTPFTPD Program

The syntax for FTTPD is:

HTTPFTPD [options] [<http_port> [<ftp_port> [<rc_port>]]]

Any combination of these switches may be used. They should be separated by at least one space.

Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/t enable htaccess directory level authentication
/u unload if resident
/c close listen
/d do not start remote console
/g allow old type (spawning) CGI
/p Passive mode
/i=<InterruptNumber> Interrupt number for cgi API
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections
/a=<ScreenX>, <ScreenY> set screen aspect

/v=<ScreenBufferSegment>[:
<ScreenBufferOffset>]

set video buffer address (hex)

/k Abort all active connections and unload

90 Chapter 7, SOCKETS Server and Client Applications

Remarks
ScreenX, ScreenY

The width and height of the screen area to serve for the remote console session.
These values default to 80 and 25, respectively.

ScreenBufferSegment, ScreenBufferOffset
Together, a pointer to the top -left corner of the display memory to serve for the
remote console session. These values default to B000 and 0000 respectively, for
monochrome display adapters and to B800 and 0000 respectively, for color display
adapters.

MemorySize
The maximum amount of memory available to the server. The default value is 32K.
The value of m can range from 8192 to 63472.

MaximumConnections
The maximum number of simultaneous connections allowed by the server.

InterruptNumber
The interrupt number to access the CGI API.

http_port
HTTP port to listen on. This parameter defaults to the standard HTTP port number
of 80.

ftp_port
FTP port to listen on. This parameter defaults to the standard FTP port number of 21

rc_port
Remote Console port to listen on. This parameter defaults to 81.

Configuration File
HTTPFTPD uses the standard SOCKET.UPW file for validating logins. The file is
composed of text lines, each representing a login name, password, and the configuration
to use for a session opened with those credentials. Space characters separate the
parameters in the file, which are in the following format:

name password directory rights

The location of the username/password file to be used by the server is specified by the
environment variable SOCKETS as follows:

%SOCKETS%\SOCKET.UPW

If the variable SOCKETS is not specified, the following file is used:
\DL\SOCKETS\SOCKET.UPW

Configuration File Parameters
name

The login name of this record.

password
The password to authenticate a user trying to login as this name.

directory
The starting directory for this user.

Chapter 7, SOCKETS Server and Client Applications 91

rights
May contain any combination of the following characters specifying which
permissions this user is granted (FTP rights must be specified first.):

r means that this user has read access.

w means that this user has write access.

c means that this user has permission to make new directories.

d means that this user has permission to change to a directory other than his starting
location and subdirectories from the starting location.

e means that this user may 'get' files

p means that this user may 'post' files

g means that this user may use cgi

m means that this user may use Remote Console

Example Command Lines
HTTPFTPD /m=40000 /r
HTTPFTPD /a=80,25 /v=a000:0000 /r

Appendix A, Packet Drivers

Overview

SOCKETS provides support for a wide range of LAN adapters supporting the Packet driver
specifications.

The packet driver specification is adhered to by many vendors of LAN adapters and is also freely
available as public domain software from the Internet e.g. from www.crynwr.com . SOCKETS
only supports the packet driver specification, but public domain converters or “shims” are
available to convert from NDIS or ODI to packet driver. Some “shims” may be obtained from
Datalight Inc. but are not distributed with SOCKETS. SOCKETS may use up to eight packet
drivers.

Using the same network board, SOCKETS can operate simultaneously with other network
operating systems such as Novell, Microsoft, Banyan and others.

Note: Software configuration of network hardware, such as Plug and Play settings or packet
drivers, must be completed before SOCKETS is loaded. Failure to properly load and
configure the appropriate software results in error messages from SOCKETS. To help
you isolate which device is failing; the interface command is referenced in those error
messages.

For development using Microsoft Windows, it is recommended to purchase an NDIS3 Virtual
Packet Driver from www.danlan.com . Versions are available for both Windows 9X and Windows
NT/2000. Use a different IP address for SOCKETS than that used by Windows.

Note: SOCKETS can be run in a Console Window (DOS box) using Windows NT/2000, but
problems may be experienced scheduling it unless constantly calling an API function.
XPING can be used for this purpose to run TSR servers.

The supplied utility PDTEST.EXE can be used to test or diagnose your packet driver before
attempting to start SOCKETS. For further information on PDTEST, refer to Appendix ??
“Managing the Network and Troubleshooting.”

Packet Driver Installation

After you have installed SOCKETS, copy your NIC (Network Interface Controller) packet driver,
from the NIC Driver disk. The various manufacturers supply their own packet drivers that may
differ from what is documented here. Always consult the software and documentation supplied
with your network controller first.

94 Appendix A, Packet Drivers

Note: Many PCI packet drivers require no command line parameters to load and, by default, set
up an interrupt vector of 0x60.

Using a Memory Manager with a Packet Driver

If a board using mapped memory (for example, SMC) is used with an upper memory block
manager (EMM386), the shared memory must be excluded:

DEVICE=C:\DOS\EMM386.EXE X=D000-D3FF

Packet Driver over ODI Driver Installation

If you already have Novell using ODI installed, just modify AUTOEXEC.BAT and the existing
NET.CFG, otherwise make a \ODI directory on your hard drive and copy the following files to it:

Filename Location

LSL.COM Novell WSGEN floppy disk

NETX.EXE or VLM.EXE Novell WSGEN floppy disk

IPXODI.COM Novell WSGEN floppy disk

ODIPKT.COM NIC Driver disk *

NIC ODI Driver NIC Driver disk

* Note: ODIPKT.COM may not be provided by your vendor. In that case, there are many
solutions available on the Web – just do a search for “odipkt.com”.

Examples of ODI Drivers:

SMC8000.COM, SMCPLUS.COM, NE2000.COM, 3C5X9.COM or 3C503.COM

If you do not have a NET.CFG file, create an ASCII text file in the \ODI directory called
NET.CFG that should look similar to the following:

Link Support
 buffers 8 1600
Protocol IPX
 Bind ODI_driver
Link Driver ODI_driver
 int irq
 port io port
 frame ETHERNET_802.3
 frame ETHERNET_II

The important parts to check are the buffers in the Link Support section and the order of the
Ethernet Frame (also called Envelope Type) lines. Each Frame line specifies a logical board,

Appendix A, Packet Drivers 95

starting from number 0. ODIPKT should link to the Ethernet_II board, which, in this example,
would be board number 1. The file mu st contain at least the following:

Link Support
 buffers 8 1600
Link Driver ODI_driver
 frame ETHERNET_II

Example for SMC:
Link Support
 buffers 8 1600
Link Driver SMCPLUS
 Port #1 280
 mem #1 000D0000 2000/10
 Int #1 3
 frame ETHERNET_802.3
 frame ETHERNET_II

Add the following lines to your AUTOEXEC.BAT file:
CD\ODI
LSL
rem Your NIC ODI driver
ODIPKT 1 96
IPXODI
NETX
F:

The syntax for ODIPKT.COM is:

ODIPKT logical_board interrupt_vector

The interrupt vector must be specified in decimal; for example 0x60 = 96.

logical_board is the index of the Frame type entry starting at 0. The normal frame type to use with
SOCKETS on Ethernet is ETHERNET_II which is the second entry (or logical board 1) in the
preceding example.

Example
CD\ODI
LSL
SMCPLUS
ODIPKT 1 96

Using a Memory Manager with an ODI Driver

If a board using mapped memory (for example, SMC) is used with an upper memory block
manager (for example, EMM386), the shared memory must be excluded as follows:

DEVICE = C:\DOS\EMM386.EXE X=D000-D3FF

96 Appendix A, Packet Drivers

Packet Driver over NDIS2 Driver Installation
After you have installed SOCKETS, make a \LANMAN directory on your hard disk and copy the
following files to it:

Filename

PRO.MSG
PROH.MSG
PROTMAN.DOS
DIS_PKT.DOS
NETBIND.COM
NDIS 2 Driver for NIC

Add the following lines to your CONFIG.SYS file in the following order and not separated by any
other command:

 DEVICE=C:\LANMAN\PROTMAN.DOS
 DEVICE=C:\LANMAN\<Your NIC's NDIS driver>
 DEVICE=C:\LANMAN\DIS_PKT.SYS

Example
 DEVICE=C:\LANMAN\PROTMAN.DOS
 DEVICE=C:\LANMAN\SMC8000.DOS
 DEVICE=C:\LANMAN\DIS_PKT.DOS

Add the following line to your AUTOEXEC.BAT file

 C:\LANMAN\NETBIND

Create an ASCII text file called PROTOCOL.INI in the \LANMAN directory to pass parameters
to the various drivers:

[PROTOCOL MANAGER]
 DRIVERNAME=PROTMAN$
[PKTDRV]
 DRIVERNAME=PKTDRV$
 BINDINGS=<label_name>
 INTVEC=0x60
[label_name]
 DRIVERNAME= Your NIC's NDIS driver name
 IRQ=irq
 RAMADDRESS= ram_base_addr
 IOBASE= io_base_addr

Appendix A, Packet Drivers 97

Example
[PROTOCOL MANAGER]
 DRIVERNAME=PROTMAN$
[PKTDRV]
 DRIVERNAME=PKTDRV$
 BINDINGS=WDMAC
 INTVEC=0x60
[WDMAC]
 DRIVERNAME=WDMAC$
 IRQ=3
 RAMADDRESS=0xD000
 IOBASE=0x280

Using a Memory Manager with an NDIS Driver

If a card using mapped memory (e.g. SMC) is used with an upper memory block manager (e.g.
EMM386), the shared memory must be excluded as follows:

 DEVICE = C:\DOS\EMM386.EXE X=D000-D3FF

For more information on the NDIS drivers consult your network operating system documentation.

Appendix B, Network Management and Troubleshooting

This chapter describes solutions to common LAN problems, both configuration and performance.

Network Management
The Network Manager is expected to:

• Setup each SOCKETS application according to user requirements.

• Monitor the status of various connections and trace traffic as it traverses the network, in order
to resolve problems.

• Modify the software configuration to align it with changes in the physical environment on
which it runs.

Configuration Case Studies

Managing Host Names on a File Server-Based LAN

The SETHOST.EXE program manages the host names on a file server based LAN. The purpose
of running SETHOST.EXE is to keep all the IP addresses in a single file on the server and allow
all workstations to run the same software setup and yet maintain a unique IP address at each
workstation. An alternative for non-file server-based networks is to use BOOTP or DHCP where
a suitable server is available.

Installing SETHOST

Edit the HOSTS file to add all the workstation names and IP addresses. We recommend that all
the workstation IP addresses be preceded with an asterisk to make them hidden to other users
looking into the list of hosts. For example,

*198.147.35.120 admin03

Copy the SETHOST.EXE program and an empty file MACHOST.MF to your server in a directory
that is named, for this example, X:\SOCKETS.

At each workstation, log in as supervisor (or have write access to X:\SOCKETS) and execute the
DOS commands:

x:
cd \SOCKETS\DOS
SETHOST /N=WS_NAME
SETHOST
SET

The SETHOST /N=WS_NAME command creates an entry in the MACHOST.MF file with the
name of the workstation and its MAC (Ethernet board) address. This is the important “once-only”

100 Appendix B, Network Management and Troubleshooting

command. The next two commands are to verify that the ws_name is stored in the environment
variable HOSTNAME.

In the AUTOEXEC.BAT, or any batch file executed after login and before running SOCKETS,
put the following commands:

x:
CD \SOCKETS\DOS
SETHOST

In SOCKETS, set the IP address in SOCKET.CFG as follows:
ip address \HOSTNAME\

The IP addresses are now linked to the MAC addresses of the network cards. If you change a
network board or swap a PC, must update the MACHOST.MF file with

sethost /ws_name

The MACHOST.MF file keeps the mapping from the MAC addresses to the workstation names
and the HOSTS is used to map the workstation name to its IP address.

The variable name HOSTNAME and filename MACHOST.MF are the defaults for
SETHOST.EXE but they can be user specified. Execute sethost /? to see the available options.
See also “.

System Timer Interrupt Use
The timer interrupt (INT 1CH) and the hardware interrupt vectors specified in the interface
command(s) or found automatically in Packet Drivers by SOCKETS, are hooked. Whenever such
an interrupt occurs or when the API is called, the SOCKETS scheduler is called. The scheduler
looks for queued incoming packets (queued at interrupt time by the Packet Driver or serial port
driver) as well as the timer queue for timeouts, such as not receiving a TCP acknowledgment in
time.

Packets are generally sent when a packet is received or the API is invoked, unless an ARP
resolution is in progress, the TCP connection is not yet established, the Nagle heuristic is in
operation or the offered window does not allow it. UDP packets are generally sent immediately
when received by the API unless an ARP resolution is in progress.

Whenever SOCKETS is executing, it sets a BUSY flag and when the API is called during this
time, which is only possible if it is called from an interrupt service routine, the API call fails with
ERR_RE_ENTRY. Testing the BUSY flag before executing an API call can circumvent this error.
The address of the BUSY flag can be obtained by the GET_BUSY_FLAG low-level API call.

The timer interrupt is assumed to be the standard PC timer interrupt with a period of
approximately 55 ms. The exact period of the timer interrupt at INT 1CH is not important, but
modifying the period will affect the scheduling of the kernel.. Too long a period may cause erratic
behaviour and too short a period may cause excessive overhead. The important value for timing
purposes is the BIOS timer variable at absolute location 046CH. The DWORD at 046CH MUST
increment at a rate of 65536 increments per hour. (About 18 per second).

Appendix B, Network Management and Troubleshooting 101

Advanced Network Configuration

SOCKETS offers additional networking capabilities for large networks. Using the Routing
Information Protocol (RIP), SOCKETS can be configured to be aware of multiple IP
routers/gateways.

BOOTP servers are detected when SOCKETS is started without specifying an IP address or an
address of 0.0.0.0. To trace the BOOTP negotiations, use a trace all iodt command in your .CFG
file before defining any interfaces.

DHCP servers are detected and used when SOCKETS is started with an IP address of 0.0.0.1.

For file server linked networks the SOCKETS utility SETHOST can be used to centralize
management of IP addresses. SETHOST maintains a file mapping of the Ethernet (MAC) address
of each machine to an IP address.

SOCKETS’ Alternative Routing feature allows more than one route to be specified to a particular
host or network. Failure of one route causes an automatic switch to the next route. The failed
route is tested periodically and used again when it becomes available.

Tuning TCP/IP
Tuning a computer is a trade-off between the speed of operation and the amount of memory it
uses. Performance depends on the number of TCP connections for the computer; more sessions
require mo re memory.

TCP Retry Strategy

If there is a delay in your network connections, SOCKETS employs an intelligent retry strategy.
A retry is attempted after a retry interval that gets longer as a function of the number of the retry.
The first retry is attempted after the current RTT (Round Trip Time) plus one PC clock tick (18
milliseconds) has elapsed without a response. SOCKETS calculates the RTT as a smooth average
of past measured RTTs, starting with the IRTT on a new connection.

For the first five intervals, the time doubles, giving interval lengths of 2, 4, 8, 16 and 25 times the
RTT. Then, the square of the interval number is used starting with 5-squared, giving 25 times
RTT. Consequently, increasing the number of retries can cause the total elapsed time to become
quite long. More than 255 retries results in an infinite number of retries, causing connections to
never time out.

When a SOCKETS station starts up, it sends a broadcast ARP request with its IP address to check
for duplicate IP addresses. Any SOCKETS client in a retry mode picks up this ARP. Then it
retries immediately without waiting for the next scheduled retry time.

Number of retries 1 2 3 4 5 6 7 8 9 10 11 12
Interval length (in RTT) 1 2 4 8 16 25 36 49 64 81 100 121
Total time (in RTT) 1 3 7 15 31 56 92 141 205 286 386 507

102 Appendix B, Network Management and Troubleshooting

To get the current RTT in use for a connection n, use the tcp status n command that gives the
smoothed average RTT indicated by SRTT.

Keep-alive

All SOCKETS servers test established connections after a minute of no-traffic by sending an
empty packet with a decreased sequence number and waiting for the acknowledgement. If the
server does not receive an acknowledgement it retries using the retry strategy described above
with the smoothed Round Trip Time (RTT). When all the retries have failed, the connection has
timed out and the server resets that connection. This prevents servers from hanging in a connected
state when the remote client has stopped responding.

Troubleshooting

Problems with LICENSE.DAT File

For SOCKETS demo only (socketmd.exe and socketpd.exe).

The SOCKET environment variable is required in the demonstration version to indicate the
directory with the LICENSE.DAT file, which contains the license information.

The LICENSE.DAT file contains your license information in demonstration versions. When this
error message appears, the most frequent problem is that the file is in the wrong directory.
SOCKETS looks in the SOCKETS directory (as given in the SOCKET environment variable) for
the LICENSE.DAT file and then (to accommodate simple new installations) in the \SOCKETS
directory of the current drive. If the file contents have been damaged, it will not run. The
information in the LICENSE.DAT file is displayed when you start. The number next to SL
indicates the number of concurrent users allowed.

XPING

The XPING utility is the most basic test to see if connections are working. Always first try to
ping a host that does not seem to respond. Failure to get a response to a ping can usually be traced
to one of the following reasons:

• Network cable not plugged in.

• Incomplete bind of the drivers on the local machine. (Carefully check all of the
diagnostic messages while booting).

• Inadequate routing information. It may also mean an invalid return route somewhere.

• Lost packages along the route. Sending many ping requests and get only some back;
could relate to network hardware problems.

• Remote host is not responding (not switched on, software not loaded, not connected, and
so on).

A ping response displays the time taken to get a response. Note that the timing depends on the
clock ticks. In an 80x86 PC these ticks are approximately 55ms, so limit the accuracy of the
reported times to 55ms.

Appendix B, Network Management and Troubleshooting 103

Utility Programs
The utilities described in the following sections will help you to configure and test your
SOCKETS installation.

PDTEST, Packet Driver Test Utility

The PDTEST utility is a diagnostic program that tests loaded packet drivers. See PDTEST in
“Chapter 6, SOCKETS Utility Descriptions” for more information.

SETHOST, IP Address Maintenance Utility

The SETHOST utility sets an environment variable (default HOSTNAME) to the name contained
in a map file (default MACHOST.MF) according to the hardware address (MAC or Ethernet)
found by searching for a packet driver tsr. See SETHOST in “Chapter 6, SOCKETS Utility
Descriptions” for more information.

IPSTAT, IP and Memory Statistics Utility

The IPSTAT utility returns statistics on IP and memory. See IPSTAT in “Chapter 6, SOCKETS
Utility Descriptions” for more information.

SOCKETS Glossary

Address Mask (also referred to as NetMask)
A bit mask used to select bits from an IP address for subnet addressing. The mask is 32 bits long, and
selects the network portion of the IP address and one or more bits of the local portion.

ANSI (American National Standards Institute)
A group that defines U.S. standards for the information processing industry. ANSI participates in
defining network protocol standards.

API (Application Program Interface)
An API is a specification of the methods an application programmer can use to access services provided
by a software module. In the case of a network, the API specifies the interface to the network software.
In TCP/IP, the idea of a “Socket” as the endpoint of a connection is used. A “socket” then refers to an
abstraction to define the endpoint of a connection as far as the API is concerned. A socket can be
created, opened, read, written, closed, and deleted in much the same way a file is handled in DOS. The
difference is that two sockets must exist, normally on two hosts, before a connection can be made. A
read operation on one side must always have a matching write operation on the other side.
A common way of interfacing a terminal emulator to networking software in a PC is to use Interrupt
14h. This is the PC BIOS entry point for serial port support, but when used for networking purposes,
the original entry point is reused to provide a similar, but much expanded function. In addition to the
native character at a time transfer, block transfers are also offered to increase throughput.

ARP (Address Resolution Protocol)
The TCP/IP protocol used to dynamically bind a high-level IP Address to a low-level physical
hardware address. ARP is used across a single physical network and is limited to networks that support
hardware broadcast.

Baud
Literally, the number of times per second the signal can change on a transmission line. Commo nly, the
transmission line uses only two signal states making the baud rate equal to the number of bits per
second that can be transferred. The underlying transmission technique may use some of the bandwidth,
so it may not be the case that users experience data transfers at the line’s specified bit rate.

BIOS

Basic Input Output System – software that interfaces directly with the hardware.

BIOS extension

A short program that the BIOS recognizes and executes as the BIOS initializes the system.

106 SOCKETS Glossary

Boot

Booting is restarting and reloading DOS. A PC can be booted by turning it off and then turning it
on or by pressing the Ctrl, Alt, and Del keys simultaneously.

Bootable disk

A system disk that contains the files necessary to start and run the computer.

BOOTP (Bootstrap Protocol)
A protocol a host uses to obtain startup information, including its IP address, from a server.

Broadcast
A packet delivery system that delivers a copy of a given packet to all hosts that attach to it is said to
broadcast the packet. Broadcast may be implemented with hardware or software.

Built-in device

Built-in device is an input/output device which is part of the DOS kernel.

CSLIP (Compressed Serial Line Internet Protocol)

CSLIP is an enhancement of SLIP by implementing Van Jacobson header compression. CSLIP
uses more memory than SLIP but provides better throughput and faster response times, especially
on small packets.

Datagram
The basic unit of information passed across a TCP/IP connection. An IP datagram is to an Internet as a
hardware packet is to a physical network. It contains a source and destination address along with data.

DHCP (Dynamic Host Configuration Protocol)
A protocol that a host uses to obtain all necessary configuration information including IP address.

DNS (Domain Name Server)
The on-line distributed database system used to map human-readable machine names into IP addresses.
DNS servers throughout the connected Internet implement a hierarchical namespace that allows sites
freedom in assigning machine names and addresses. DNS also supports separate mappings between
main destinations and IP addresses.

Domain
A part of the DNS naming hierarchy. Syntactically, a domain name consists of a sequence of names
separated by periods.

DOS

Disk Operating System – an operating system that relies on disks for file storage.

SOCKETS Glossary 107

DOS kernel

The DOS kernel is the part of DOS that handles a standard DOS call (Int 21h). It handles opening,
reading/writing of files, loads programs, and manages memory.

FAT

File Allocation Table – a data table which allows DOS to keep track of file location on the disk so
that they can be accessed by programs running on DOS.

Flow control
Control of the rate at which hosts or routers inject packets into a network or Internet, usually to avoid
congestion.

FTP (File Transfer Protocol)
The TCP/IP standard, high-level protocol for transferring files from one machine to another. FTP uses
TCP.

Gateway
Originally, researchers used the term IP gateway for dedicated computers that route packets; vendors
have adopted the term IP router. Gateway now refers to an application program that interconnects two
services.

ICMP (Internet Control Message Protocol)
An integral part of the Internet Protocol that handles error and control messages. Specifically, router
and hosts use ICMP to send reports of problems about datagrams back to the original source that sent
the datagram. ICMP also includes an echo request/reply used to test whether a destination is reachable
and responding.

IPCP (IP Control Protocol)
A PPP protocol responsible for configuring the IP protocol parameters on both ends of the point-to-
point link.

IPCPIN
A PPP protocol monitoring incoming requests responsible for configuring the IP protocol parameters
on both ends of the point-to-point link. This was implemented to allow one instance of SOCKETS to
act as both a client and server.

IP (Internet Protocol)
The TCP/IP standard protocol that defines the IP datagram as the unit of information passed across an
Internet and provides the basis for connectionless, best-effort packet delivery service. IP includes the
ICMP control and error message protocol as an integral part. The entire protocol suite is often referred
to as TCP/IP because TCP and IP are the two fundamental protocols.

LAN (Local Area Network)
Any physical network technology designed to span short distances (up to a few thousand meters).
Usually, LANs operate at tens of megabits per second through several gigabits per second.

108 SOCKETS Glossary

LCP (Link Control Protocol)
A PPP protocol responsible for establishing, configuring, and testing the data link connection.

LCPIN
A PPP protocol monitoring incoming requests which is responsible for establishing, configuring, and
testing the data link connection.

Memory disk

A disk that uses either ROM or RAM for the disk media. The memory disk has a FAT,
directories, and file data.

MIME (Multipurpose Internet Mail Extensions)
A standard used to encode data such as images as printable ASCII text for transmission through e-mail.

Modem
A modem (modulator/demodulator) converts d igital computer signals into analog signals as used in
telephone equipment. The data is sent across the telephone lines and converted back to digital signals
by another modem at the destination node.
Using dial-up modems, a remote client can gain access to a network through the telephone line.
Remote client users can gain access to the network resources just as if they were physically connected
to the LAN. SOCKETS supports the PPP, SLIP and CSLIP protocols.

MSS (maximum segment size)
The largest segment allowed for communicating across a TCP/IP connection.

MTU (maximum transmission unit)
The largest amount of data that can be transferred across a given physical network.

Multicast

A technique that allows copies of a single packet to be passes to a selected subset of all possible
destinations.

Nagle Algorithm
This algorithm states that under some circumstances, there will be a waiting period of 200 ms before
data is sent over a connection.. The following are the specific rules used by the Nagle Algorithm in
deciding when to send data:

• If a packet is equal or larger than the segment size (or MTU), and the TCP
window is not full, send an MTU size buffer immediately

• If the interface is idle, or the TCP_NODELAY flag is set, and the TCP window
is not full, send the buffer immediately.

• If there is less than ½ of the TCP window in outstanding data, send the buffer
immediately.

• If sending less than a segment size buffer, and if more than ½ the TCP window
is outstanding, and TCP_NODELAY is not set, wait up to 200 msec for more
data before sending the buffer.

SOCKETS Glossary 109

For more information please see RFC-896, “Congestion Control in IP/TCP”

Nagle Heuristic
See Nagle Algorithm.

Packet
Used loosely to refer to any small block of data sent across a packet switching network.

Packet Driver
Local area network software that divides data into packets for sending on the network, and reassembles
the data into its original form when it arrives at its destination.

PCMCIA

Personal Computer Memory Card Interface Association. PCMCIA is a group that defined the
standard for a credit-card size card that may act as a memory RAMDISK, ROMDISK, or
FLASHDISK. These cards are commonly referred to as PC cards.

POST

Power On Self Test – a test performed by the BIOS that checks the computer hardware for
problems before fully initializing the computer.

PPP (Point-to-Point Protocol)
A protocol for framing IP when sending across a serial line.

RAM disk

A disk drive that uses RAM for the media in place of the usual rotating disk drive.

RFC (Request for Comment)
The name of a series of notes that contain surveys, measurements, ideas, techniques, and observations,
as well as proposed and accepted TCP/IP protocol standards.

RIP (Routing Information Protocol)
A protocol used to propagate routing information inside an autonomous system.

ROM-DOS

Datalight operating system that can be placed in and execute from within a ROM.

ROM disk

A disk drive that uses ROM for the media in place of the usual rotating disk drive.

ROM scan

The scanning of the ROM area for BIOS extensions performed by the BIOS at initialization time.

110 SOCKETS Glossary

ROM

Read Only Memory. This is memory that is not changeable once placed in a computer.

Router
A special purpose, dedicated computer that attaches to two or more networks and forwards packets
from one to the other.

RTT (round-trip time)
A measure of delay between two hosts.

Shell

The Shell is the command interpreter, usually COMMAND.COM. The shell takes text commands
and calls the DOS kernel to implement them.

SLIP (Serial Line Internet Protocol)
A framing protocol used to send IP across a serial line. SLIP is popular when sending IP over dialup
phone lines.

SMTP (Simple Mail Transfer Protocol)
The TCP/IP standard protocol for transferring electronic mail messages from one machine to another.

System disk

See Bootable disk.

TCP (Transmission Control Protocol)
The TCP/IP standard transport level protocol that provides the reliable, full duplex, stream service on
which many application protocols depend.

TTL (time-to-live)
A technique used in best-effort delivery systems to avoid endlessly looping packets.

UDP (User Datagram Protocol)
The TCP/IP standard protocol that allows an application program on one machine to send a datagram to
an application program on another.

WWW (World Wide Web)
The large-scale information service that allows a user to browse information. WWW offers a
hypermedia system that can store information as text, graphics, audio, etc.

Index

Address Resolution Cache, 13
Advertised routes

using the rip advertise command to
advertise, 26

using the rip use command to update
routes, 26

Alternate routing connections
setting control with the par command, 22

ARP Command, 13
ARPSTAT utiltity, 63
AUTOEXEC.BAT file

needed with ODI drivers, 94
Baud rate for a serial link

setting with the par command, 23
Buffers , 43
, 63
COM port speed/flow control

setting with the par command, 23
Combined HTTP and FTP Server, 89
Connection maintenance

how servers determine client non-response,
102

using XPING to verify working
connections, 102

Connection retry interval
setting the Rount Trip Time (RTT), 101

Connection termination
setting the retry count with tcp retry, 33

Connection timeouts
how servers determine client non-response,

102
how Sockets adjusts the retry attempts, 101

Data bits/parity for a serial link
setting with the par command, 23

DHCPSTAT Utility, 63
Domain Command, 15
Domain Name Server, 15
Driver (network) specifications

a descriptions of, 93
Drivers

ODI driver and AUTOEXEC.BAT file, 94
ODI driver and NET.CFG file, 94
ODI driver installation, 94
ODI driver ODIPKT.COM, 95
packet driver installation, 93

Environment Variables, 4
Extension CGI, 82
File server

using SETHOST.EXE to manage files on,
99

flow control, 38
Flow control for a serial link

setting with the par command, 23
FTP

commands, 88
FTP Client, 64
FTP Combined Server, 89
FTP Server, 87
FTPD, 87
gateway application

example, 57
Gateways

using RIP to set up multiple, 101
GETMAIL Application, 67
Host names

using SETHOST.EXE to manage on a file
server, 99

Hosts, 8
Htaccess, 86
HTTP

client, 67
HTTP Combined Server, 89
HTTP Server, 81
HTTPD Program, 84
HTTPGET, 67
iface command

using to define a PPP interface, 20
Iface Command, 15
IFSTAT Utility, 68
Installing drivers

ODI driver and the AUTOEXEC.BAT file,
94, 95

ODI driver and the NET.CFG file, 94
ODI driver on the target system, 94
packet driver on the target system, 93

Installing Sockets, 3
Interface Command, 15
IOCTL Utility, 68
IOCTLH Utility, 69
IP Address Maintenance Utility, 103
IP and Memory Statistics Utility, 103
IP Command, 18
IP Routing Table, 27
Ipstat, 103
IPSTAT Utility, 69
IRTT (Inital Round Trip Time)

112 Index

setting with the tcp irtt command, 33
License.dat file, 102
Local and remote options

setting for point-to-point protocol, 20
Local port starting number

setting with the tcp lport command, 33
LPD, Starting, 29
LPR Printer Client, 70
Mail Retrieval application, 67
Mail Message Creation, 71
Mail Sending Utility, 75
MAKEMAIL utility, 71
Maximum Segment Size , 42
Maximum Transmission Unit , 42
mdd

(Multi Destination Drivers), 40
Memory manager

using with ODI drivers, 95
using with packet drivers, 94

modem
examples , 57
pool, 40

Modem Configuration Examples, 38
Modem Configuration File, 36
Modem Operation, 8
Modem Retry Strategy, 39
MSS, 42, 108
mss: max segment size, 9
MTU, 42, 108
Multi Destination Drivers, 40
NET.CFG file

needed with ODI drivers, 94
NETBIOS Utility, 72
Network Management, 99
ODI drivers

entries in AUTOEXEC.BAT, 94
file names of typical ODI drivers, 94
how to install on the target system, 94
need a NET.CFG file, 94
running ODIPKT.COM, 95
using a memory manager with, 95

Open Data-Link Interface (ODI)
a description of, 93

Packet Driver, 7
NDIS, 96

Packet driver test utility, 103
Packet drivers

a description of, 93
file names of typical packet drivers, 93
how to install on the target system, 93
using a memory manager with, 94

par command
using to define PPP local/remote options,

20

using to define PPP retry counters, 21
using to define PPP timeout values, 21
using to define PPP username/password, 21

Par Command, 19
Pdtest, 103
PDTEST Utility, 73
PING. XPING
Point-to-Point Protocol (PPP)

configuration of the interface, 20
Point-to-point protocol option

open a specified layer, 22
setting local and remote LCP/IPCP, 20
setting retry counters, 21
setting timeout values, 21
setting username/password, 21

Point-to-Point Protocol parameters/options
using with Sockets for DOS, 20

Port speed and flow control
setting with the par command, 23

PPP Functionality, 8
Print Server, Starting, 29
Printer Client, LPR, 70
Printer Client, SPRINT, 78
Printer Command, 24
Printer Redirector, 24
RC.JAR Remote Console Utility, 74
RC_DK.JAR Remote Console for Danish

Keyboards, 74
RCCLI Client, 74
Remote Console Client, 82
Remote Console Client, RCCLI, 74
Remote Console for Danish Keyboards, 74
Remote Console Server, 82
Remote Console Utility, 74
Retry counter options

setting for point-to-point protocol, 21
setting with the tcp retry command, 33

Retry Strategy, Modems, 39
rip advertise command

setting/disabling with the par command, 24
using to advertise routes, 26

RIP Command, 25
rip use command

using to create RIP requests for route
updates, 26

Round Trip Time (RTT)
how Sockets adjusts the retry attempts, 101

Route Command, 27
Routing control for alternate connections

setting with the par command, 22
Routing Information Protocol (RIP), 25

using to setup multiple IP routers/gateways,
101

Routing Table, entry, 27

Index 113

RTT (Round Trip Time) for a connection
replacing the auto-set RTT value, 34

Sconfig Utility, 9
Segment size (maximum)

setting with the tcp mss command, 33
Send segment size (maximum)

setting with the tcp smss command, 34
SENDMAIL Utility, 75
Server connections

how servers determine client non-response,
102

using XPING to verify working
connections, 102

Sethost, 103
SETHOST Utility, 75
SETHOST.EXE program

managing host names on a file server, 99
SNTPCLI Utility, 77
Socket.cfg, 8
Socket.UPW, 85
SocketM, 10

Command Line Options, 35
SocketP, 10

Command Line Options, 35
Sockets

Combined HTTP and FTP Server, 89
Configuration, 5, 7
Configuration Files, 8
Environment Variables, 4
Extension CGI, 82
file selection, 4
FTP Server, 87
FTPD, 87
Htaccess, 86
HTTP Server, 81
HTTPD program, 84
Installing, 3
Modem Operation, 8
Packet Driver, 7
Password Permissions file, 85
PPP Functionality, 8
Remote Console Client, 82
Remote Console Server, 82
Sconfig, 9
Serial Operation, 7
Socket.UPW, 85
system requirements, 1
Test Programs, 103
troubleshooting, 102
Utilities, 103

Sockets Configuration, 13
Sockets Configuration Examples, 45

Dial-up SLIP Connection with Sockets as
an IP Router, 57

Direct Serial Connection with Sockets as a
Client, 51

Direct Serial Connection with Sockets as a
Server, 49

Multiple Dial-in Connections, 59
Single Dial-in Connection, 47
Single Dial-in Connection with ASY

Interface, 48
Sockets Dial-up to ISP, 46
Sockets Machine Using Call Back

Verification, 53
Sockets Machine with CBV and Logging-

in, 55
Sockets Serving as a Web Page, 45

Sockets Diagnostic Utilities
PDTEST, 73

, 63
DHCPSTAT, 63
IFSTAT, 68
IOCTL, 68
IOCTLH, 69
IPSTAT, 69

Sockets Examples, 45
Sockets Printer Redirection, 24
SPRINT Printer Client, 78
Start Command, 29
Start LPD, 29
Start Print Server, 29
tcp

window, 9
TCP Command, 31
tcp irtt command

using to set IRTT (Inital Round Trip Time),
33

tcp lport command
using to set local port starting number, 33

tcp mss command
using to set maximum segment size, 33

TCP Operating Parameters, 31
tcp retry command

using to set/display the retry count, 33
tcp rtt command

using to replace the RTT (Round Trip
Time), 34

tcp smss command
using to set maximum send segment size,

34
tcp timemax command

using to set the maximum tcp timeout, 34
tcp timeout

setting the maximum with the tcp timemax
command, 34

TCP Utility, 79

114 Index

tcp window command
using to set the maximum receive window

size, 34
TCP, Changing Parameters, 79
Terminating a TCP connection

using tcp retry to set retry count, 33
Timeout values

setting for point-to-point protocol, 21
Timer Interrupt, 100
Troubleshooting

using XPING to verify working
connections, 102

Username/password
setting for point-to-point protocol, 21

Web
file retrieving, 67

Window size (receive)
setting the maximum with the tcp window

command, 34
window size: TCP, 9
XPING

using to verify working connections, 102
XPING Utility, 79

