走出误区(2)

🏠 首页 《无线电》杂志 1999年 🔗 第3期 🔗 第8页 分类:广阔天地大有作为 🔗 耿纯 🔗

4.关于长行程的小口径低音单元:

常常有人说,小口径长行程低音单元,只要行程够长,就可以发出足够的低音,这是一种错误的观点。从理论上讲,只要在同一单位时间里、驱动同体积的空气就可以产生同等级的声压。但具体到低音单元来说,这是不现实的。因为过大的行程和过强的空气压缩比,会导致重播的声音严重失真。对于大口径的低音单元(直径在200mm以上),在达到足够的声压时,由于扬声器纸盆的驱动面积大而行程较短,重播时的失其较小,音色较好。即使是在一种比较理想的状态下,目前的音箱声失真也只能作到1%。在小口径、长行程低音单元工作时,由于过大的行程导致失真度的迅速上升,是一种保量不保质的假象。所以对于多数的小型、小口径的音箱来说,即便是音箱的小功率测试低频还可以,但在实际使用中与大型大口径音箱来比,差距还是相当大的,是本质性的差别。所以在有条件的时候,选择大型的音箱是有道理的。

5.关于低灵敏度音箱的音色:

曾经有一个时期流行着这样一种说法,这就是低灵敏度的音箱音色好。其实这只是一种比较片面、又不科学的说法。

决定音箱音色好坏的主要因素只有频响、瞬态特性、阻尼特性和承受功率等几方面,与灵敏度无关。换句话说,对于同样承受功率的音箱来说,在相同的重播音量下,灵敏度越低的音箱,所需要的输入功率越大,就越接近过载,失真会相对增加。

在20年前,由于扬声器单元自身的技术质量还没有达到一个比较好的程度。在制作音箱时,只能在分频器上加了很多的衰减校正电路。最终的结果是频响曲线直了,但灵敏度大幅度地降低了,只能达到82dB左右。在这种情况下,通常要用大功率的功放才能较好地驱动低灵敏度的音箱,但在大功率的驱动下,低灵敏度的小型音箱很容易产生过载失真,甚至不能播放某些大动态的音乐作品。

由于音响科技的发展,目前已有多种型号的灵敏度超过100dB的监听级、Hi-Fi级的音箱问世,其最高灵敏度已经接近110dB。

6.关于音箱内的吸音棉:

“没有吸音棉的音箱是低档的音箱”,这种说法是不准确的。

低档的音箱里没有吸音材料,这是一个现实。

在套装机和廉价的成品音箱中,基本上都没有填充吸音材料。因此,就有人得出了这样一个结论:低档的音箱里没有吸音棉,往低档音箱里加入填充材料可以改善重播效果。

其实上述的结论没有什么因果关系,不存在内在的任何关联。

吸音材料在音箱中只起两个作用,一是消除音箱箱体的某些谐振与染色;二是适当缩小音箱的体积。对于音箱属于哪个档次毫无关系。

有些人以为往音箱中增加填充物是一剂万能的良药,这就大错而特错了。

只要音箱的箱体设计合理,自身没有明显的谐振,箱体又足够大,完全可以不加填充材料就能制作出高品质的音箱。在全世界的音箱制作领域中,这种成功的例子很多。在音箱箱体中不加填充材料,对音箱的瞬态特性有好处。

一只经过认真设计、认真加工制造的音箱,其出厂时已基本上达到了一个比较理想的状态。在这种情况下随意改变音箱内填充材料的有无、多少,会对音箱的重播造成很多影响,而这些影响多数是负面的。

过多的填充物,会造成重播时的声音发肉,瞬态特性差,有气无力。虽然在测试时,曲线会有所改善,但主观听音时声音表现则会劣化。有一点必须要明确,这就是音箱是听的,不是看的。

7.关于音箱的分频器:

在音箱的分频器中,主要的只有三类元器件:这就是电感线圈、电容和电阻。

电阻的作用是衰减器,用来平衡各频段的声音比例。选用时只要功率够大就行。对于小型音箱的高音衰减电阻来说,选用金属膜的电阻效果会好一些。

电感的作用是滤除高音,选通低音。近年来流行了很多种用异型漆包线绕制的电感线圈。其中有多股绞合漆包线、六角形漆包线和带状漆包线等等见图4。每一种异形线材的电感线圈,都被称之为具有某种神力。但事实真的如此吗?其实不然。

图1
图1 🔍原图 (399×214)

对于音箱用电感线圈的要求,只有三条。一是电感数值准确;二是自身的直流电阻低;三是不易产生饱合失真。

关于数值准确,只要在生产过程中,逐只用高精度的仪表去测量、校准就行了。

要想降低电感线圈的自身电阻,就必须提高漆包线自身的导电能力。漆包线自身的导电能力和它们的截面积与截面形状有着密不可分的直接关系。当导线的横截面为圆形、正方形、六角形时,效率最高。

具体到绕制电感线圈,六角形横载面的漆包线,可以有效地减少匝间的空隙,提高电感的效率。尤其是圈数较大的多层线圈,改善的效果将十分明显。但采用六角形漆包线时,制作成本也会大幅度地提高,见图5(a)、图5(b)。所以,如果不是在很高档的场合使用,选用纯度在4N以上的圆形无氧铜漆包线,效果就已经相当好了。在选择漆包线的线径时,也绝没有线径越粗越好之说。只要电感量合乎要求后,其直流电阻是低音扬声器音圈直流电阻的十分之一左右就行。电感的直流电阻太大了,直接影响音箱的低频阻尼特性;电感的直流电阻太小了,又会无谓地加大制作成本。

图2
图2 🔍原图 (489×192)

至于分频器电容的选择,也绝不会出现一只电容就令音箱的重播产生根本性的改变。

对于自己动手制作音箱或想改进成品音箱的朋友,首先要有比较明确的目的。

在制作音箱时,要根据扬声器单元的投资去选择分频电容的档次。

例如你买的是几十元一只的高音单元,再花20元钱为它选配电容就不值。你还不如买百元一只的高音头,选择几元1只的分频电容来得实惠。如果你已买了300元一只的高音单元,花几十元钱买分频电容,这才叫门当户对。

对于音频电容,品牌不同、材质不同,对重播的影响也不同。但这些内在的、细致的差别是在中档以上的高音单元里,才能得到较好地体现的。

对于低频段的分频电容,主要以容值准确、耐压、可靠为主。相对于高音分频电容来说,要求相对可以低一些。因为大容值的高档电容实在是太贵了,经常处于一种使用后得不偿失的状态。

8.关于钕铁硼:

对于扬声器单元来说,磁性材料是它们的骨骼,是它们动力的基础,选用高磁能积的材料制造扬声器单元,是提高扬声器灵敏度的好方法,但不是唯一的方法。

对于扬声器的磁性材料,尤其是大功率低音扬声器的磁性材料,有一个很重要的标准就是热稳定性一定要好。钕铁硼磁性材料的磁能积很大。但它也有致命伤。一是它本身容易氧化;二是它的热稳定性差。钕铁硼磁性材料的居里温度很低,在80℃时,其性能将下降到参考温度的80%(参考温度为24℃)。这就说明了这样一个问题:如果是一只没有经过特殊散热处理的钕铁硼低音单元,在大功率工作时,由于温度升高的影响,会导致低音的不足。这种音色的变异,对于多数音乐爱好者来说,是可以明显地觉察出来的。

所以,目前国外的多数扬声器生产厂家,基本上把钕铁硼材料作为高音单元的磁性材料,并采取较为有效地散热措施。很少将钕铁硼磁性材料应用到低音单元的制造工艺之中。

经过多年的Hi-Fi实践,大多数的人基本上可以明确区分出不同的音频信号线对重播音色造成的微小差别。而由于钕铁硼磁性材料热稳定性差而造成低音单元高于10%的频响变异,将是一个不小的遗憾。

9.关于减磁法提高音质:

前一阵子,曾经流行过减磁法改善音质的说法。所谓的减磁法,是指在成品音箱的扬声器单元磁体上,吸附一些大号的铁钉子。使单元本身的磁性得到一定的分散,降低了扬声器单元的灵敏度,改变了原有的Q值。采用减磁法调整音箱的重播效果,会起到一定的作用。但减磁法只适合于那些原来听着声音发干、发紧的音箱,不可能适用多数的场合。对于采用减磁法能改善播出的音箱,采用调整音箱内吸音材料和调整音箱倒相管的方法同样可以达到目的,而且音箱的灵敏度不会受到损失。

10.关于理想小音箱的频响曲线:

由于小型音箱的低音重播能力受音箱箱体的制约最多,频响测试曲线和主观听音间的差距也最大,这也就对小音箱的频响测试曲线提出了一个折衷的、新的要求。这种要求是:频响的低端不过于追求较低的数字化的效果。不可刻意追求低频端的延伸低于35Hz或更多。因为对于使用小口径低音单元(6 1/2寸以下)的小型书架式音箱,它那低于40Hz的测试频响,在实际应用中的意义不大。但假如把频响测试的低端频率改为50Hz,把曲线变成低端有一个小峰而高频端略有些下降的曲线见图6(b),将在不超出测试标准的前提下,大为改善重播时的音响效果。

图3
图3 🔍原图 (401×263)

具有图6(b)曲线的小音箱,在重播音乐时,你会感觉到低音比较丰满有力,重播音色厚道、甜美。

关于音箱的误区,其实还有很多;想在一篇文字中把它说清楚是不可能的。随着科学技术的发展,走出了旧的误区,还会遇到新的误区。因此要想少走弯路,就得真正与国际接轨,不断地学习才行。 (全文完) (耿纯)