神奇的压缩感知

专栏

21-a8-01.jpg
木遥,加州大学洛杉矶分校应用数学专业博士,自称资深数学初学者,通过手机、电脑等各种设备,时刻与世界连通。

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。经典的数据压缩技术,无论是音频压缩(例如 mp3)、图像压缩(例如 jpeg)、视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。

压缩感知是什么

既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接“采集”压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的“压缩感知”,也就是说,直接感知压缩了的信息。

可是这看起来是不可能的事情。因为压缩后的数据并不是压缩前的数据的一个子集,并不是说,本来有照相机的感光器上有一千万个像素,扔掉其中八百万个,剩下的两百万个采集到的就是压缩后的图像──这样只能采集到不完整的一小块图像,有些信息永远地丢失了而且不可能被恢复。如果要想采集很少一部分数据并且指望从这些少量数据中“解压缩”出大量信息,就需要保证:第一,这些少量的采集到的数据包含了原信号的全局信息;第二,存在一种算法,能够从这些少量的数据中还原出原先的信息来。

有趣的是,在某些特定的场合,上述第一件事情是自动得到满足的。最典型的例子就是医学图像成像,例如断层扫描(CT)技术和核磁共振(MRI)技术。对这两种技术稍有了解的人都知道,这两种成像技术中,仪器所采集到的都不是直接的图像像素,而是图像经历过全局傅立叶变换后的数据。也就是说,每一个单独的数据都在某种程度上包含了全图像的信息。在这种情况下,去掉一部分采集到的数据并不会导致一部分图像信息永久地丢失(它们仍旧被包含在其他数据里)。这正是我们想要的情况。

如果假定信号(无论是图像还是声音还是其他别的种类的信号)满足某种特定的“稀疏性”,那么从这些少量的测量数据中,确实有可能还原出原始的较大的信号来,其中所需要的计算部分是一个复杂的迭代优化过程,即所谓的“L1-最小化”算法。

压缩感知意义大

把上述两件事情放在一起,我们就能看到这种模式的优点所在。它意味着:我们可以在采集数据的时候只简单采集一部分数据(“压缩感知”),然后把复杂的部分交给数据还原的这一端来做,正好匹配了我们期望的格局。这一思路可以扩展到很多领域。在大量的实际问题中,我们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和我们所希望重建的信息之间有某种全局性的变换关系,并且我们预先知道那些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展得非常广泛了。

但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国 Rice 大学的一部分科学家正在试图开发一种新的摄影装置(被称为“单像素照相机”),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件无法得到满足。这时,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。

无论如何,压缩感知所代表的基本思路即从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。